(Press-News.org) CINCINNATI--The disease is so rare and complex that its acronym is hard to pronounce. But for infants unlucky enough to be born with this lung disease, the outcome is usually fatal.
The disease is called alveolar capillary dysplasia with misalignment of the pulmonary veins (ACDMPV). Research indicates the disease is linked to mutations in the FOXF1 gene. Worldwide, medical experts have documented about 200 cases, but an unknown number of infants may have died without the condition ever being diagnosed, according to the National Organization for Rare Disorders.
The disease is caused by genetic variations that prevent proper blood vessel formation in the lungs. Within days or weeks after birth, infants turn blue from lack of oxygen while blood pressure spikes within their lungs. The few who survive do so by receiving extremely rare infant-sized lung transplants.
Now, a study led by experts at Cincinnati Children's and the University of Cincinnati reports helping mice (with a FOXF1 mutation identical to human ACDMPV patients) survive longer with this deadly disease by using high-tech nanoparticles to deliver a STAT3 gene into the lungs to stimulate blood vessel growth. STAT3 is a key downstream target of FOXF1, and its delivery can correct the vascular deficiency in ACDMPV mice. Details were published online June 11, 2021, in the journal Circulation.
If these results can be matched in human studies in the years to come, the co-authors say this success could boost the pace of development for other nanoparticle-based therapies for a wide range of conditions.
"Nanoparticle carriers have shown minimal toxicity and have accelerated the development of novel therapies for human cancers, diabetes and chronic inflammatory disorders. We have developed a unique nanoparticle delivery system that can deliver genes capable of stimulating micro-vessel growth in the newborn lung," says the study's senior author Vlad Kalinichenko, MD, PhD, a member of the Center for Lung Regenerative Medicine and the Perinatal Institute at Cincinnati Children's. "This study shows that a single injection of the nanoparticles with the STAT3 gene vector was sufficient to increase alveolar capillary density, prevent excessively high blood pressures, and dramatically improve survival."
Without treatment, about 70% of mice born with ACDMPV die within 28 days of birth. The new treatment reduced that mortality rate to 35%, says the study's first author Fei Sun, PhD, a member of the Center for Lung Regenerative Medicine at Cincinnati Children's.
Gene-driven therapy but not gene editing
Unlike gene replacement therapies that can make permanent changes to the body, this nanoparticle approach involves materials that do not stay in the body longer than seven days. And yet, in the mice studied, a single treatment early after birth was enough to divert an entire stream of later-developing problems that occur with ACDMPV.
The therapy works by delivering an engineered nanoparticle made of several polymers, fatty acids and a bit of cholesterol that carries the non-integrating STAT3 gene, which in turn prompts blood vessel growth in the lung tissue.
Kalinichenko and colleagues observed the molecular processes involved as part of their ongoing studies of lung development. The nanoparticle was developed with help from Zicheng Deng and Andrew Dunn, who are graduate students mentored by Donglu Shi, PhD, from the Materials Science and Engineering Program at the University of Cincinnati.
With more blood vessels in place, the rapidly growing newborn lungs formed in a closer-to-normal fashion, without setting off dangerous molecular "remodeling" signals that can cause permanent malformations and death from lung failure.
The study details how the treatment improved several measures of lung, heart and blood vessel health, including arterial oxygenation levels, blood pressure in the right ventricle, the ratio of pulmonary acceleration time to pulmonary ejection time (PAT/PET), the diameter of pulmonary arteries, and the thickness of their walls.
Next steps
Much more work must be completed before the nanoparticles can be tried in human newborns with ACDMPV, including safety tests and determining whether repeated treatments would be needed.
The Pediatric Lung Transplant Program at Cincinnati Children's, which performs transplants on some of the smallest infants, plans to continue working closely with Kalinichenko and colleagues as their studies progress. Some families travel across the globe for care here. Watch this video.
INFORMATION:
About the study
Co-authors for this study also included Guolun Wang, PhD, Arun Pradhan, PhD, Kui Xu, MD, Jose Gomez-Arroyo, MD, PhD, Yufang Zhang, MS, Gregory Kalin, medical student, Ronald Vagnozzi, PhD, Hua He, PhD, Yuhua Wang, PhD, Allen York, BS, Rashmi Hegde, PhD, Jason Woods, PhD, Tanya Kalin MD, PhD, and Jeffery Molkentin, PhD.
Funding for this work included multiple grants from the National Institutes of Health (HL84151, HL141174, HL149631, HL132849, and HL152094).
Los Alamos, N.M., June 10, 2021 - For the first time, the boundary of the heliosphere has been mapped, giving scientists a better understanding of how solar and interstellar winds interact.
Video link: https://youtu.be/w__vzNXSFoI
"Physics models have theorized this boundary for years," said Dan Reisenfeld, a scientist at Los Alamos National Laboratory and lead author on the paper, which was published in the Astrophysical Journal today. "But this is the first time we've actually been able to measure it and make a three-dimensional map of it."
The heliosphere is a bubble created by the solar wind, a stream ...
GAINESVILLE, Fla. --- An international research team has described a new species of Oculudentavis, providing further evidence that the animal first identified as a hummingbird-sized dinosaur was actually a lizard.
The new species, named Oculudentavis naga in honor of the Naga people of Myanmar and India, is represented by a partial skeleton that includes a complete skull, exquisitely preserved in amber with visible scales and soft tissue. The specimen is in the same genus as Oculudentavis khaungraae, whose original description as the smallest known bird was retracted last year. The two fossils were found in the same area and are about 99 million years ...
What The Study Did: The results suggest assisted living residents experienced increased mortality during the COVID-19 pandemic consistent with increases observed among nursing home residents.
Authors: Kali S. Thomas, Ph.D., of Brown University in Providence, Rhode Island, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.13411)
Editor's Note: The article includes funding/support disclosures. Please see the article for additional ...
What The Study Did: Researchers examined the association between the amount of ultra-processed food consumed by children and their weight in early adulthood.
Authors: Kiara Chang, Ph.D., of Imperial College London, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamapediatrics.2021.1573)
Editor's Note: The article includes funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.
INFORMATION:
Media advisory: ...
What The Study Did: Differences by sex and race/ethnicity in suicidal thoughts and nonfatal suicide attempts among U.S. adolescents over the last three decades were assessed in this survey study.
Authors: Yunyu Xiao, Ph.D., of Indiana University-Purdue University in Indianapolis, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.13513)
Editor's Note: The article includes conflicts of interest disclosures. Please see the article for additional information, including ...
Diseases that affect tubular structures in the body, such as the gastrointestinal (GI) system, vasculature and airway, present a unique challenge for delivering local treatments. Vertically oriented organs, such as the esophagus, and labyrinthine structures, such as the intestine, are difficult to coat with therapeutics, and in many cases, patients are instead prescribed systemic drugs that can have immunosuppressive effects. To improve drug delivery for diseases that affect tubular organs, like eosinophilic esophagitis and inflammatory bowel disease, ...
CAMBRIDGE, MA -- Inspired by kirigami, the Japanese art of folding and cutting paper to create three-dimensional structures, MIT engineers and their collaborators have designed a new type of stent that could be used to deliver drugs to the gastrointestinal tract, respiratory tract, or other tubular organs in the body.
The stents are coated in a smooth layer of plastic etched with small "needles" that pop up when the tube is stretched, allowing the needles to penetrate tissue and deliver a payload of drug-containing microparticles. Those drugs are then released over an extended period of time after the stent is removed.
This kind of localized drug delivery could make it easier ...
Like amyloid plaque, the genetic variant APOE4 has long been associated with Alzheimer's disease, but still little is known about the role the gene plays in the disease process.
Now, a new study published in END ...
A non-contact laser imaging system could help doctors diagnose and treat eye diseases that cause blindness much earlier than is now possible.
The new technology, developed by engineering researchers at the University of Waterloo, is designed to detect telltale signs of major blinding diseases in retinal blood and tissue that typically go unseen until it is too late.
With current testing methods, diseases such as age-related macular degeneration, diabetic retinopathy and glaucoma--which have no symptoms in their early stages--are usually diagnosed only after vision is irreversibly affected.
"We're optimistic that our technology, by providing functional details of the eye such as oxygen saturation and oxygen metabolism, may be able to play a critical role in early ...
PULLMAN, Wash. - Most consumers care about the technology and the ingredients used to make their microwavable dinners and other shelf ready meals, according to a new study led by Washington State University researchers. The study found that many consumers are willing to pay a premium for ready-to-eat meals with a 'clean label' showing few ingredients.
They are also more willing to fork out their hard-earned cash when they know their processed foods are made with a new technology that helps limit the number of additives and preservatives commonly found in most ...