PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Tailored laser fields reveal properties of transparent crystals

Research team led by the University of Göttingen investigates surface magnetisation

Tailored laser fields reveal properties of transparent crystals
2021-06-18
(Press-News.org) The surface of a material often has properties that are very different from the properties within the material. For example, a non-conducting crystal, which actually exhibits no magnetism, can show magnetisation restricted to its surface because of the way the atoms are arranged there. These distinct properties at interfaces and surfaces of materials often play a key role in the development of new functional components such as optoelectronic chips or sensors and are therefore subject to extensive research. An international research team from the University of Göttingen, the Max Planck Institute for Biophysical Chemistry Göttingen and the National Research Council Canada has now succeeded in investigating the surfaces of transparent crystals using powerful irradiation from lasers. The results of the study were published in the journal Nature Communications.

The researchers describe their method, which relies purely on light, to determine electrical and magnetic properties on surfaces. This new method could play an important role in the investigation of transparent, non-conductive materials, as established methods using electrons often experience experimental limitations due to low conductivity, among other difficulties. The use of light helps get around these limitations: when light rays hit a material surface, for example a glass pane, they are reflected at the interface, refracted and absorbed into the material. These effects, which can be observed in everyday life, are the result of the interaction of the weak light field with the atoms and electrons of the irradiated material. In the case of stronger light fields, which are achieved with lasers, further effects occur, which can, for example, generate higher light frequencies - known as high harmonic radiation. These effects are often dependent on the direction of oscillation of the light field relative to the atomic arrangement in the material.

"We take advantage of this dependence when generating high harmonic radiation to gain insights into the properties at and near the surface of transparent materials," says first author and PhD student Tobias Heinrich from the Faculty of Physics at Göttingen University. "The light field we use is composed of two laser pulses rotating in opposite directions at two different frequencies, and this results in a cloverleaf-shaped symmetrical field." These tailor-made light fields can be adapted to the atomic arrangement of the material to control the generation of the high harmonics.

"We show that this control can be used to study magnetisation at the surface of magnesium oxide," explains Dr Murat Sivis, the study lead. Depending on the direction of rotation of the light field - also called chirality - the generated ultraviolet light is absorbed to different degrees at the interface. "For various materials that do not actually exhibit magnetisation or electrical conductivity, these properties at the surface have been predicted in theory," Sivis said. "In our study, we show that it is now possible to investigate such phenomena using just optical methods, probably even at very short time scales." The researchers also hope to gain new insights into the electronic properties of other chiral materials, as the study shows using the example of the helical crystal structure of quartz. The sensitivity to chiral phenomena on surfaces could potentially open up new opportunities for research into innovative functional materials.

INFORMATION:

Originalveröffentlichung: Tobias Heinrich et al. „Chiral high-harmonic generation and spectroscopy on solid surfaces using polarization-tailored strong fields". Nature Communications (2021). Doi: 10.1038/s41467-021-23999-9.

Contact: Dr Murat Sivis
University of Göttingen
Faculty of Physics: Solid state physics and nanostructures research group
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

Max Planck Institute for Biophysical Chemistry - Ultrafast Dynamics
Am Faßberg 11, 37077 Göttingen, Germany
Tel: +49 (0)551 39-24535
Email: murat.sivis@uni-goettingen.de
http://www.uni-goettingen.de/en/598878.html

Tobias Heinrich
University of Göttingen
Faculty of Physics - Solid state physics and nanostructures research group
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Tel: +49 (0)551 39-26818
Email: tobias.heinrich@uni-goettingen.de
http://www.uni-goettingen.de/de/91116.html


[Attachments] See images for this press release:
Tailored laser fields reveal properties of transparent crystals

ELSE PRESS RELEASES FROM THIS DATE:

For the first time, researchers visualize metabolic process at the single-cell level

For the first time, researchers visualize metabolic process at the single-cell level
2021-06-18
Understanding cellular metabolism - how a cell uses energy- could be key to treating a wide array of diseases, including vascular diseases and cancer. While many techniques can measure these processes among tens of thousands of cells, researchers have been unable to measure them at the single-cell level. Researchers at the University of Chicago's Pritzker School of Molecular Engineering and Biological Sciences Division have developed a combined imaging and machine learning technique that can, for the first time, measure a metabolic process at both the cellular and sub-cellular levels. Using a genetically encoded biosensor paired with artificial intelligence, ...

Tug-of-war receptors for sour taste in fruit flies sheds light on human taste biology

Tug-of-war receptors for sour taste in fruit flies sheds light on human taste biology
2021-06-18
PHILADELPHIA - Sour taste does not have the nearly universal appeal that sweet taste does. Slightly sour foods or drinks such as yogurt and lemon juice are yummy to many, but such highly sour foods as spoiled milk are yucky, even dangerous. Like humans, many other animals, including insects, prefer slightly acidic over very acidic foods. Evolutionary biologists surmise that the need for sour detection to be finely tuned is a two-sided coin: slightly acidic foods can enhance digestion and stimulate saliva production; relative sour-to-sweet taste can signal optimal ripeness of fruit; and extremely sour food, as with bitter taste, is a warning to what not to ingest. However, despite this usefulness, how do animals discern different concentrations ...

Controlling brain states with a ray of light

Controlling brain states with a ray of light
2021-06-18
The brain presents different states depending on the communication between billions of neurons, and this network is the basis of all our perceptions, memories, and behaviours. It is often considered a "black box", with difficult access for clinicians and researchers, as few limited tools are available to perform accurate and spaciotemporal studies on brain neuronal behaviour. Now, researchers from the Institute for Bioengineering of Catalonia (IBEC) in collaboration with August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and have added some light to the subject: they succeeded for the first time in controlling neuronal activity in the brain using a molecule responsive to light. The study included participants ...

Vaccination, previous infection, protect against gamma variant in animal model

2021-06-18
MADISON - In early January 2021, travelers returning to Tokyo, Japan, from Amazonas, Brazil, were screened for COVID-19 at the airport. A few days later, the National Institute of Infectious Disease of Japan announced that the travelers had returned with a new variant of the SARS-CoV-2 virus. That variant, known as gamma, or P.1, led to a deadly surge in COVID-19 cases in Brazil this spring, and has now spread across the world. More than 200 cases have been detected in Wisconsin. Whether current vaccines are as effective against the gamma variant remains unknown. In a new study using variant virus recovered from one of the original travelers, ...

Managed retreat: A must in the war against climate change

2021-06-18
University of Delaware disaster researcher A.R. Siders said it's time to put all the options on the table when it comes to discussing climate change adaptation. Managed retreat -- the purposeful movement of people, buildings and other assets from areas vulnerable to hazards -- has often been considered a last resort. But Siders said it can be a powerful tool for expanding the range of possible solutions to cope with rising sea levels, flooding and other climate change effects when used proactively or in combination with other measures. Siders, a core faculty member in UD's Disaster Research Center, and Katharine J. Mach, associate professor at the University ...

KIYATEC clinical study data shows test accurately predicts brain cancer patient response

2021-06-17
KIYATEC, Inc. announced today the publication of new peer-reviewed data that establishes clinically meaningful prediction of patient-specific responses to standard of care therapy, prior to treatment, in newly diagnosed glioblastoma (GBM) and other high-grade glioma (HGG) patients. The results, the interim data analysis of the company's 3D-PREDICT clinical study, were published June 16, 2021 in Neuro-Oncology Advances, an open access clinical journal. A goal of the study, which continues to enroll, was for the test's prospective, patient-specific response prediction to achieve statistical significance for ...

Study explores how the elderly use smart speaker technology

2021-06-17
Researchers from Bentley University, in partnership with Waltham Council on Aging in Massachusetts, and as part of a study funded by the National Science Foundation, have been exploring how the elderly use smart speakers at home. Waltham, a satellite city about eight miles west of Cambridge has a population of about 60,000, with about one in six being an elderly citizen. The purpose of the study was to understand how the elderly use the smart speaker technology at home. A smart speaker is a hardware device that is always-on. When a wake-word triggers the software contained in the device, the smart speaker listens to the command to provide a response or carry out the command (accessing resources ...

Women in science propose changes to discriminatory measures of scientific success

Women in science propose changes to discriminatory measures of scientific success
2021-06-17
When Ana K. Spalding, a Research Associate at the Smithsonian Tropical Research Institute (STRI) and Assistant Professor of Marine and Coastal Policy at Oregon State University (OSU) talks about mentorship in academia, she describes it as meaningful relationship. It goes beyond conversations about research and publications, and into shared experiences. This is just one approach--proposed by Spalding and 23 other women scientists from around the world, in a new article published in PLOS Biology--that calls for a shift in the value system of science to emphasize a more equal, diverse and inclusive academic culture. The authors came together after reading a ...

On the road to practical, low-cost superconductors with unexplored materials

On the road to practical, low-cost superconductors with unexplored materials
2021-06-17
Superconductors are something like a miracle in the modern world. Their unique property of zero resistance can revolutionize power transmission and transport (e.g., Maglev train). However, most of the conventional superconductors require cooling down to extremely low temperatures that can only be achieved with liquid helium, a rather expensive coolant. Material scientists are now investigating "high-temperature superconductors" (HTSs) that can be cooled to a superconducting state by using the significantly cheaper liquid nitrogen (which has a remarkably higher temperature than liquid helium). ...

Changing a 2D material's symmetry can unlock its promise

2021-06-17
TROY, N.Y. -- Optoelectronic materials that are capable of converting the energy of light into electricity, and electricity into light, have promising applications as light-emitting, energy-harvesting, and sensing technologies. However, devices made of these materials are often plagued by inefficiency, losing significant useful energy as heat. To break the current limits of efficiency, new principles of light-electricity conversion are needed. For instance, many materials that exhibit efficient optoelectronic properties are constrained by inversion symmetry, a physical property that limits engineers' control of electrons in the material and their options for designing novel or efficient devices. In research published today in Nature ...

LAST 30 PRESS RELEASES:

New research develops forest extent map for Mexico

In the brain, bursts of beta rhythms implement cognitive control

New mitigation framework reduces bias in classification outcomes

Zap Energy achieves 37-million-degree temperatures in a compact device

Magnetic microcoils unlock targeted single-neuron therapies for neurodegenerative disorders

Laser-treated cork absorbs oil for carbon-neutral ocean cleanup

COVID-19 vaccination and incidence of pediatric SARS-CoV-2 infection and hospitalization

Long-term taste and smell outcomes after COVID-19

Artificial intelligence to be used for the detection of common eye disease

A roadmap for digital neuroscience

Radiologists propose actions to combat climate change

SwRI to discuss connected vehicle data exchanges, AI tools at 2024 ITS America Conference & Expo

Announcing the second cohort of the Hevolution/AFAR new investigator awardees in aging biology and geroscience research

Advances in understanding the evolution of stomach loss in agastric fishes

Social media affects people’s views on mental illness

Aerogel-based PCMs improve thermal management, reduce microwave emissions in electronic devices

Undernourished household members at increased risk for developing TB after exposure

A non-equivalent co-doped strategy to effectively improve the electrical properties of BIT-based high-temperature piezoelectric ceramics

RAMP1 protects hepatocytes against ischemia-reperfusion injury by inhibiting the ERK/YAP pathway

Molecular mechanism of chemical diversity of thermophilic fungus and its ecological and biological functions

Engaging pharmacists to improve atrial fibrillation care

Exploring brain synchronization patterns during social interactions

Unveiling the molecular functions of lipid droplet proteins in Arabidopsis thaliana leaves

Perfecting the view on a crystal’s imperfection

Fossil frogs share their skincare secrets

Existing drugs studied in patients with rare immune diseases

Loma Linda University study reveals alarming rates of pediatric injuries from mechanical bull riding

Excessive pregnancy weight gain and substantial postpartum weight retention common in military health care beneficiaries

Odor-causing bacteria in armpits targeted using bacteriophage-derived lysin

Women’s heart disease is underdiagnosed, but new machine learning models can help solve this problem

[Press-News.org] Tailored laser fields reveal properties of transparent crystals
Research team led by the University of Göttingen investigates surface magnetisation