Battle of the Pleiades against plant immunity
2021-06-24
(Press-News.org) Mythological nymphs reincarnate as a group of corn smut proteins to launch a battle on maize immunity. One of these proteins appears to stand out among its sister Pleiades, much like its namesake character in Greek mythology. The research carried out at GMI - Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences - is published in the journal PLOS Pathogens.
Pathogenic organisms exist under various forms and use diverse strategies to survive and multiply at the expense of their hosts. Some of these pathogens are termed "biotrophic", as they are parasites that maintain their hosts alive. These biotrophic pathogens deregulate physiological processes in their hosts by suppressing their immune defenses and favoring disease development. In plant biotrophic pathogens, such hostile actions are inflicted by secreted molecules including proteins, termed "effectors". One biotrophic pathogen infecting maize plants is Ustilago maydis, or corn smut. Up until present, the arsenal used by the U. maydis effector proteins to wage war against the maize immune response remained largely unstudied. Now, researchers around University of Bonn professor and previous GMI group leader Armin Djamei unveil the function of the Pleiades, a heterogeneous group of effector proteins in corn smut, and tell a tale worthy of Greek mythologies.
The Pleiades: Between mythology, stars and maize immunity
Whether the star cluster in the Taurus constellation was named after the seven daughters of Atlas and Pleione, or whether the opposite is true, is still subject to debate. However, what brings the name "Pleiades" on a group of effector proteins in corn smut? In fact, the genes encoding the Pleiades are arranged as a co-regulated cluster in the U. maydis genome, hence the analogy with the star cluster. Furthermore, the genetic cluster in question is particularly dynamic. This phenomenon is partly due to the high prevalence of transposon sequences, or "jumping genes". As a result, the high sequence diversity in the Pleiades' genetic cluster produces effector proteins that lack conserved domains. Therefore, a sequence-based prediction of the Pleiades' functions is simply not possible. In this sense, the forces at play in the battle against maize immunity were still awaiting close examination.
Different tactics leading to the same goal
"For the first time now, we shed light on the function of a whole effector cluster in U. maydis, the cluster of ten effector genes encoding the Pleiades," states Prof. Djamei. The team does so by analyzing the effect of deleting the cluster in the pathogen as well as by producing these proteins in plants. "We showed that a cluster deletion strongly weakens the pathogen and leads to the accumulation of Reactive Oxygen Species [ROS] in infected plant tissues," explains Dr. Fernando Navarrete, first author on the publication. Rapid production of ROS is a known plant immune defense mechanism, thus allowing the plant to fight the invading pathogen. Eight of the ten Pleiades appear to target specifically this mechanism, albeit by distinct means and despite marked sequence differences. Navarrete elaborates: "Our findings underline the functional relevance of effector clusters in smut fungi. The functional redundancy of the individual players is explained by their mechanistic diversity and complementarity. You must imagine the individual Pleiades as distinct units fighting the same enemy on several battle fronts."
Promoting flowering to better fight immunity?
In fact, Djamei and his team demonstrate that two of the Pleiades, Taygeta1 and Merope1, inhibit ROS production in different plant cell compartments. Taygeta1 does so in the cell cytoplasm, whereas Merope1 acts in the nucleus. These two "sisters" appear to be taking the lead, mechanistically speaking, in the battle against plant immunity by investing new roles. However, the researchers uncover an even more developed arsenal in the hands of Merope1: this Pleiade appears to affect a family of enzymes that also control flowering time. "An effector that dampens immunity while simultaneously promoting flowering would be a great advantage for smuts, which usually sporulate only in the host floral tissues," explains Djamei.
In Greek Mythology, Merope is the only Pleiade to fade away upon marrying a mortal, while her sisters conserve their eternal glow. Could it be possible, that this "Lost Pleiade", as she is often portrayed in 19th century works of art, found her vocation in fighting plant immunity?
INFORMATION:
This research was carried out mainly at the GMI and was finalized at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Stadt Seeland, Germany and the Excellence University of Bonn, INRES, Department of Plant pathology.
Original publication:
Navarrete F et al., "The Pleiades are a cluster of fungal effectors that inhibit host defenses". PLOS Pathogens, 2021. https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009641
ELSE PRESS RELEASES FROM THIS DATE:
2021-06-24
INDIANAPOLIS -- A first-of-its-kind large-scale study of vegetation growth in the Northern Hemisphere over the past 30 years has found that vegetation is becoming increasingly water-limited as global temperatures increase.
The results are significant since vegetation is one of the biggest factors when it comes to controlling water and carbon cycling across Earth, which influences global temperatures. The work by IUPUI and Indiana University Bloomington researchers Wenzhe Jiao, END ...
2021-06-24
(Denver)-Patients with primary lung cancer detected using low-dose computed tomography screening are at reduced risk of developing brain metastases after diagnosis, according to a study published in the Journal of Thoracic Oncology.
JTO is an official journal of the International Association for the Study of Lung Cancer. The full study is available here: Impact of Low-Dose Computed Tomography Screening for Primary Lung Cancer on Subsequent Risk of Brain Metastasis - Journal of Thoracic Oncology (jto.org)
The researchers, led by Summer Han, PhD, from Stanford University School of Medicine in Palo ...
2021-06-24
A new research paper published in the American Journal of Clinical Nutrition last week showed that a low Omega-3 Index is just as powerful in predicting early death as smoking. This landmark finding is rooted in data pulled and analyzed from the Framingham study, one of the longest running studies in the world.
The Framingham Heart Study provided unique insights into cardiovascular disease (CVD) risk factors and led to the development of the Framingham Risk Score based on eight baseline standard risk factors--age, sex, smoking, hypertension treatment, diabetes status, systolic blood pressure, total cholesterol (TC), and HDL cholesterol.
CVD is still the leading cause of death globally, and risk can be reduced by changing behavioral factors such as unhealthy diet, ...
2021-06-24
A new technique to look at tumors under the microscope has revealed the cellular make-up of Wilm's tumors, a childhood kidney cancer, in unprecedented detail. This new approach could help understand how tumors develop and grow, and fuel research into new treatments for children's cancers.
Scientists at the Princess Máxima Center for pediatric oncology developed a new imaging technique and computational pipeline to study millions of cells in 3D tissue, revealing hundreds of features from each individual cell. Their research was published this month in Nature Biotechnology.
By offering a look at individual cells within an intact organ, the new technique helps scientists analyze the molecular profile of the cells, as well as their ...
2021-06-24
DURHAM, N.C. - The brain's neurons tend to get most of the scientific attention, but a set of cells around them called astrocytes - literally, star-shaped cells - are increasingly being viewed as crucial players in guiding a brain to become properly organized.
Specifically, astrocytes, which form about half the mass of a human brain, seem to guide the formation of synapses, the connections between neurons that are formed and remodeled as we learn and remember.
A new study from Duke and UNC scientists has discovered a crucial protein involved in the communication and coordination between astrocytes as they build synapses. Lacking this molecule, called hepaCAM, astrocytes aren't as sticky as they ...
2021-06-24
GRAND RAPIDS, Mich. (June 24, 2021) -- The same taste-sensing molecule that helps you enjoy a meal from your favorite restaurant may one day lead to improved ways to treat diabetes and other metabolic and immune diseases.
TRPM5 is a specialized protein that is concentrated in the taste buds, where it helps relay messages to and from cells. It has long been of interest to researchers due to its roles in taste perception and blood sugar regulation.
Now, a team led by scientists at Van Andel Institute has published the first-ever high-resolution images of TRPM5, which reveal two areas that may serve as targets for new medications. The structures also may aid in the development of low-calorie alternative sweeteners that mimic sugar. The findings were published today in Nature ...
2021-06-24
BELLINGHAM, Washington, USA - The open access Journal of Astronomical Telescopes, Instruments, and Systems (JATIS) has published END ...
2021-06-24
The study was conducted by an international collaboration involving the research team led by Luca Tiberi of the Armenise-Harvard Laboratory of Brain Cancer at the Department of Cellular, computational and integrative biology - Cibio of UniTrento, the Paris Brain Institute-Institut du Cerveau at Sorbonne Université in Paris, the Hopp Children´s Cancer Center (KiTZ) in Heidelberg, Germany, and Sapienza University in Rome. It was supported by Fondazione Armenise-Harvard, Fondazione Airc (Italian Association for Cancer Research) and Fondazione Caritro from Trento. The findings of the study, published in Science Advances, could lead to better and more effective treatments.
The team of researchers is proud of the results achieved. Luca Tiberi, coordinator of the study and corresponding ...
2021-06-24
Dmitry Blinov is a co-author of the article and Senior Research Associate in the Department of Astrophysics, St Petersburg University. He notes that researchers have been studying the optical polarisation from active galactic nuclei for more than 50 years. Some of the first academic papers on this topic were published back in the 1960s by Vladimir Hagen-Thorn, Professor in the Department of Astrophysics, St Petersburg University, and Viktor Dombrovskiy, Associate Professor in the Department of Astrophysics, Leningrad State University.
In the Universe, the main material is concentrated in galaxies with hundreds of billions of stars: there are about 200-400 of them in the Milky Way. At the centre of galaxies there are supermassive ...
2021-06-24
An international team of researchers co-led by the University of Adelaide and the University of Arizona has analysed the genomes of more than 2,500 modern humans from 26 worldwide populations, to better understand how humans have adapted to historical coronavirus outbreaks.
In a paper published in Current Biology, the researchers used cutting-edge computational methods to uncover genetic traces of adaptation to coronaviruses, the family of viruses responsible for three major outbreaks in the last 20 years, including the ongoing pandemic.
"Modern human genomes contain evolutionary ...
LAST 30 PRESS RELEASES:
[Press-News.org] Battle of the Pleiades against plant immunity