Kiwi disease study finds closely related bacterial strains display different behaviors
2021-06-25
(Press-News.org) Over the last decade, severe outbreaks of bacterial canker have caused huge economic losses for kiwi growers, especially in Italy, New Zealand, and China, which are among the largest producers. Bacterial canker is caused by the bacterial pathogen Pseudomonas syringae pv. actinidiae (Psa) and more recent outbreaks have been particularly devastating due to the emergence of a new, extremely aggressive biovar called Psa3.
Due to its recent introduction, the molecular basis of Psa3's virulence is unknown, making it difficult to develop mitigation strategies. In light of this dilemma, a group of scientists at the University of Verona and University of Rome collaborated on a study comparing the behavior of Psa3 with less-virulent biovars to determine the basis of pathogenicity.
They found that genes involved in bacterial signaling (the transmission of external stimuli within cells) were especially important, especially the genes required for the synthesis and degradation of a small chemical signal called c-di-GMP, that suppresses the expression of virulence factors. Compared to other biovars, Psa3 produces very low levels of c-di-GMP, contributing to an immediate and aggressive phenotype at the onset of infection before the plant can corral a defense response.
"It was exciting to discover this diversified arsenal of pathogenicity strategies among closely related bacterial strains that infect the same hosts but display different behaviors," said Elodie Vandelle, one of the scientists involved with this study. "Although their 'small' genomes mainly contain the same information, our research shows that bacterial populations within a pathovar are more complex than expected and their pathogenicity may have evolved throughout different strategies to attack the same host."
Their research highlights the importance of working on a multitude of real-life pathogenic bacterial strains to shed light on the diversity of virulence strategies. This approach can contribute to the creation of wider pathogenicity working models. In terms of kiwi production, Vandelle hopes their findings can help scientists develop new mitigation methods. In the long-term, their research could lead to the identification of key molecular switches responsible for the transition between high and low bacterial virulence phenotypes.
"This identification would allow, at industrial level, to develop new targeted strategies to control phytopathogenic bacteria, weakening their aggressiveness through switch control, instead of killing them," Vandelle explained. "This would avoid the occurrence of new resistances among bacterial communities, thus guaranteeing a sustainable plant protection."
INFORMATION:
For more information about this research, read " END
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-06-24
In children with rhabdomyosarcoma, or RMS, a rare cancer that affects the muscles and other soft tissues, the presence of mutations in several genes, including TP53, MYOD1, and CDKN2A, appear to be associated with a more aggressive form of the disease and a poorer chance of survival. This finding is from the largest-ever international study on RMS, led by scientists at the National Cancer Institute's (NCI) Center for Cancer Research, part of the National Institutes of Health.
The study, published in the Journal of Clinical Oncology on June 24, provides an unprecedented look at data for a large cohort of patients with RMS, offering genetic clues that could lead to more widespread use of tumor genetic ...
2021-06-24
A new study could lead to improved decision making in assigning treatments for children with the aggressive cancer rhabdomyosarcoma after revealing key genetic changes underlying development of the disease.
In the largest and most comprehensive study of rhabdomyosarcoma to date, scientists found that specific genetic changes in tumours are linked to aggressiveness, early age of onset and location in the body.
All these factors affect the chances that children will survive their disease - and understanding how they are driven by a cancer's genetics could lead to new ways of tailoring treatment for each patient.
Rhabdomyosarcoma is a rare type of cancer that resembles muscle tissue and mostly affects ...
2021-06-24
Ozone levels in the earth's troposphere (the lowest level of our atmosphere) can now be forecasted with accuracy up to two weeks in advance, a remarkable improvement over current systems that can accurately predict ozone levels only three days ahead. The new artificial intelligence system developed in the University of Houston's Air Quality Forecasting and Modeling Lab could lead to improved ways to control high ozone problems and even contribute to solutions for climate change issues.
"This was very challenging. Nobody had done this previously. I believe we are the first to try to forecast surface ...
2021-06-24
ITHACA, N.Y. - Tossing worn-out solar panels into landfills may soon become electronics waste history.
Designing a recycling strategy for a new, forthcoming generation of photovoltaic solar cells - made from metal halide perovskites, a family of crystalline materials with structures like the natural mineral calcium titanate - will add a stronger dose of environmental friendliness to a green industry, according to Cornell University-led research published June 24 in Nature Sustainability.
The paper shows substantial benefits to recycling perovskite solar panels, though ...
2021-06-24
ITHACA, N.Y. - As mosquito-borne diseases pose risks for half the world's population, scientists have been releasing sterile or genetically modified male mosquitos in attempts to suppress populations or alter their traits to control human disease.
But these technologies have failed to spread very rapidly because they require successful mating of modified mosquitoes with mosquitoes in nature and not enough research exists to fully explain which male traits females seek when they choose a mate.
Now, a new Cornell study of Aedes aegypti mosquitoes investigates how a mating cue called "harmonic convergence" might affect immunity against parasites, bacteria and dengue virus in offspring, which has important ...
2021-06-24
HOUSTON - (June 24, 2021) - Hold on there, graphene. Seriously, your grip could help make better catalysts.
Rice University engineers have assembled what they say may transform chemical catalysis by greatly increasing the number of transition-metal single atoms that can be placed into a carbon carrier.
The technique uses graphene quantum dots (GQD), 3-5-nanometer particles of the super-strong 2D carbon material, as anchoring supports. These facilitate high-density transition-metal single atoms with enough space between the atoms to avoid clumping.
An international team led by chemical and biomolecular engineer Haotian Wang of Rice's Brown School of ...
2021-06-24
Optical superoscillation refers to a wave packet that can oscillate locally in a frequency exceeding its highest Fourier component. This intriguing phenomenon enables production of extremely localized waves that can break the optical diffraction barrier. Indeed, superoscillation has proven to be an effective technique for overcoming the diffraction barrier in optical superresolution imaging. The trouble is that strong side lobes accompany the main lobes of superoscillatory waves, which limits the field of view and hinders application.
There also are tradeoffs between the main lobes and the side lobes of superoscillatory wave packets: reducing the superoscillatory feature size of the ...
2021-06-24
Early in the COVID-19 pandemic, scientists identified how SARS-CoV-2, the virus that causes COVID-19, gets inside cells to cause infection. All current COVID-19 vaccines and antibody-based therapeutics were designed to disrupt this route into cells, which requires a receptor called ACE2.
Now, researchers at Washington University School of Medicine in St. Louis have found that a single mutation gives SARS-CoV-2 the ability to enter cells through another route - one that does not require ACE2. The ability to use an alternative entry pathway opens up the possibility of evading COVID-19 antibodies or vaccines, but the researchers did not find evidence of such evasion. However, the discovery does show that the ...
2021-06-24
DUARTE, Calif. -- City of Hope, a world-renowned cancer research and treatment center, has identified how cancer cells in patients with early-stage breast cancer change and become resistant to hormone or combination therapies, according to a END ...
2021-06-24
Scientists from Helmholtz Zentrum München revise the current textbook knowledge about gastrulation, the formation of the basic body plan during embryonic development. Their study in mice has implications for cell replacement strategies and cancer research.
Gastrulation is the formation of the three principal germ layers - endoderm, mesoderm and ectoderm. Understanding the formation of the basic body plan is not only important to reveal how the fertilized egg gives rise to an adult organism, but also how congenital diseases arise. In addition, gastrulation serves as the basis to understand processes during embryonic development called epithelial-to-mesenchymal transition which is known to lead to cancer metastasis in adulthood ...
LAST 30 PRESS RELEASES:
[Press-News.org] Kiwi disease study finds closely related bacterial strains display different behaviors