(Press-News.org) The world's human population is expanding, which means even more agricultural land will be needed to provide food for this growing population. However, choosing which areas to convert is difficult and depends on agricultural and environmental priorities, which can vary widely.
A study led by Princeton University illustrates this challenge by using several different approaches to solve the same puzzle: Given a target amount of food, where should new croplands be put to minimize environmental or biodiversity impacts?
The researchers used the country of Zambia as a case study given that it currently harbors a significant amount of biodiversity but will likely see significant agricultural expansion. They looked at common ways of measuring biodiversity, like counting up the species present in the region, as well as factoring in the relative rarity of those species in that geographic region.
Depending on which factor they put into a model for optimizing land use, very different areas of land were suggested for agricultural development. In fact, the overlap between the recommended regions was less than 4%.
The findings, published in the journal Ecological Applications, indicate an urgent need for consensus: When such small differences can result in almost completely different results, contradictory models may become a roadblock to policymakers rather than a roadmap.
Conservation biologists should strive for more consistent methods for prioritizing biodiversity conservation, the researchers said, and must be more transparent in how they make and justify these decisions.
"The sheer scale of agriculture today means that we need to be strategic about where we decide to produce food into the future," said lead author Christopher Crawford, Ph.D. candidate in the Science, Technology, and Environmental Policy (STEP) Program in Princeton's School of Public and International Affairs (SPIA). "Our paper puts the stakes for the natural world into greater context, showing that what you prioritize and how you measure it can have significant consequences on biodiversity."
Crawford's co-author David Wilcove, professor of ecology and evolutionary biology and public affairs and the High Meadows Environmental Institute, explains the effects in more detail.
"Let's say you decide which areas to protect for nature and which to convert to cropland based on where birds are, you might get a different answer than if you focused on mammals. And if you base your decision on protecting the places with the most species, you might get a different answer than if you based your decision on the places with the most endangered species," Wilcove said.
Crawford and Wilcove worked with Lyndon Estes of Clark University and Tim Searchinger, also of SPIA, whose 2016 paper provided the inspiration and model used in this study. The team compared four distinct approaches to measuring biodiversity and dug into the factors underlying these different approaches.
The analysis started by comparing four commonly used approaches to measuring biodiversity previously published in academic journals. They then identified four key methodological decisions that underlay the differences between those four published approaches and created a new set of indices specifically designed to show the impact each general decision has on the prioritization of land.
Their first approach looks at the number of vertebrates -- like mammals, birds, and reptiles -- and plant species in a region, as well as expert advice on habitat priorities for conservation. The second takes into account the total number of vertebrate species, measuring their importance based on their extinction risk and the rarity of the type of ecosystem in that region. The third approach focuses on the vegetation types in the different regions, weighing them in terms of how intact they are, how rare they are, and whether or not they are threatened. The fourth approach calculates the total number of species in the different regions, weighted by the size of their geographical ranges.
After running each approach through their model, the researchers found very different regions of Zambia were recommended for agricultural development -- the overlap between the areas recommended by the different methods was less than 4%, and sometimes as low as 0.3%. This shows there likely isn't a "one-size-fits-all" solution to prioritizing land use. And while some decisions, such as changing the groups of species being considered, or how they are counted, had a much bigger effect on the ultimate land-use recommendations, even small and often overlooked methodological decisions can result in notably divergent recommendations.
The findings highlight the extreme complexity policymakers face when it comes to converting land. The method chosen when making these decisions can have huge consequences for biodiversity. While the researchers focused on biodiversity, it is also only one piece of the puzzle. Land-use prioritization must also take into account the suitability of the different regions for agriculture, the amount of carbon that would be released through land conversion, and the costs of transporting crops from the would-be agricultural region to markets. Decision-making becomes complicated if even two of these factors are considered at once, let alone all of them, because of the inevitable trade-offs.
"Which species you focus on, how you count and compare them, and the spatial scale of your analysis produce strikingly different answers to the question of which places to save and which places to develop," Wilcove said. "Scientists can come up with all sorts of sophisticated algorithms for balancing conservation with development, but unless they think very carefully about how they counted and compared the plants and animals they want to protect, their results may be meaningless."
INFORMATION:
The paper, "Consequences of under-explored variation in biodiversity indices used for land-use prioritization," first appeared online in Ecological Applications on June 27. This work was supported by the High Meadows Foundation.
PHILADELPHA--Patients who had their wisdom teeth extracted had improved tasting abilities decades after having the surgery, a new Penn Medicine study published in the journal Chemical Senses found. The findings challenge the notion that removal of wisdom teeth, known as third molars, only has the potential for negative effects on taste, and represent one of the first studies to analyze the long-term effects of extraction on taste.
"Prior studies have only pointed to adverse effects on taste after extraction and it has been generally believed that those effects dissipate over time," said senior author Richard L. Doty, PhD, ...
Annapolis, MD; June 28, 2021--Drones keep getting smaller and smaller, while their potential applications keep getting bigger and bigger. And now unmanned aircraft systems are taking on some of the world's biggest small problems: insect pests.
From crop-munching caterpillars to disease-transmitting mosquitoes, insects that threaten crops, ecosystems, and public health are increasingly being targeted with new pest-management strategies that deploy unmanned aircraft systems (UAS, or drones) for detection and control. And a variety of these applications are featured in a new special collection published this week in ...
A new study has found baby coral reef fishes can outpace all other baby fishes in the ocean.
Lead author Adam Downie is a PhD candidate at the ARC Centre of Excellence for Coral Reef Studies at James Cook University (Coral CoE at JCU).
Mr Downie said when considering aquatic athletes, young coral reef fishes shine: they are some of the fastest babies, swimming around 15-40 body lengths per second.
As a comparison, herring babies swim up to two body lengths per second, and the fastest human in the water, Olympic gold medalist Michael Phelps, can only swim 1.4 body lengths ...
The year 2020 was a period of economic hardship and significant change in a wide range of sectors for most countries. A team of authors from HSE University has explored how Russia will recover from this crisis and which industries will be affected by the economic recovery. Their study was published in the journal Voprosy ekonomiki.
Last year, the global economy experienced a crisis due to the coronavirus pandemic, with output falling by 3.5% compared to 2019. Russia's decline from the coronavirus measures was more moderate than in many developed countries (industrial ...
Almost all of the nitrogen that fertilizes life in the open ocean of the Gulf of Mexico is carried into the gulf from shallower coastal areas, researchers from Florida State University found.
The work, published in Nature Communications, is crucial to understanding the food web of that ecosystem, which is a spawning ground for several commercially valuable species of fish, including the Atlantic bluefin tuna, which was a focus of the research.
"The open-ocean Gulf of Mexico is important for a lot of reasons," said Michael Stukel, an associate professor in the Department of Earth, ...
LAWRENCE -- Despite facing cultural and political pushback, the evidence remains clear: Face masks made a difference in Kansas.
"These had a huge effect in counties that had a mask mandate," said Donna Ginther, the Roy A. Roberts Distinguished Professor of Economics and director of the Institute for Policy & Social Research at the University of Kansas. "Our research found that masks reduced cases, hospitalizations and deaths in counties that adopted them by around 60% across the board."
Ginther's article "Association of Mask Mandates and COVID-19 ...
Washington, DC--Location, location, location--when it comes to the placement of wind turbines, the old real estate adage applies, according to new research published in Proceedings of the National Academy of Sciences by Carnegie's Enrico Antonini and Ken Caldeira.
Turbines convert the wind's kinetic energy into electrical energy as they turn. However, the very act of installing turbines affects our ability to harness the wind's power. As a turbine engages with the wind, it affects it. One turbine's extraction of energy from the wind influences the ability of its neighbors to do the same.
"Wind is never going to 'run dry' as an energy resource, but our ability to harvest it isn't infinitely scalable either," Antonini explained. "When wind turbines ...
The ability to precisely control the various properties of laser light is critical to much of the technology that we use today, from commercial virtual reality (VR) headsets to microscopic imaging for biomedical research. Many of today's laser systems rely on separate, rotating components to control the wavelength, shape and power of a laser beam, making these devices bulky and difficult to maintain.
Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have developed a single metasurface that can effectively tune the different properties of laser light, ...
In the context of recent debate over the FDA's approval of aducanumab, it's refreshing to learn about a model of Alzheimer's neurodegeneration that doesn't start with the pathogenic proteins amyloid or Tau.
A new paper in Alzheimer's & Dementia from Emory neuroscientist Shan Ping Yu and colleagues focuses on an unusual member of the family of NMDA receptors, signaling molecules that are critical for learning and memory. Their findings contain leads for additional research on Alzheimer's, including drugs that are already FDA-approved that could be used preventively, and genes ...
Deployable structures -- objects that transition from a compact state to an expanded one -- are used everywhere from backyards to Mars. But as anyone who has ever struggled to open an uncooperative folding chair knows, transforming two-dimensional forms into three-dimensional structures is sometimes a challenge.
Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Harvard Graduate School of Design have developed a deployable system that is light, compact, inexpensive, easy to manufacture, and, most importantly, easy to deploy. By harnessing the mechanical instabilities in curved beams, the system can transform objects into elaborate and customizable 3D configurations on a range of scales, from large-scale furniture to small medical ...