Falling in line: The simple design and control of MOF electric flow
Osaka Prefecture University develops a method to design and control the path of electron flow in a polycrystalline material
2021-07-06
(Press-News.org) Metal-organic frameworks (MOF) are crystalline porous organic-inorganic hybrid materials that, by filling its pores with guest molecules, can create functionalities through interactions between the organic-inorganic based frameworks of MOF (host) and its guest molecules. This host-guest chemistry has the potential to bring "designable" electrical properties, allowing for a material to be organized in ways never before possible - paving the way for the next-generation of thin-film smart devices.
"However, most MOFs exhibit poor electrical conductivity", states Professor Masahide Takahashi, "due to the insulating nature of the organic linkers and the gaps between the varied shapes that make up the crystalline material." His research group from the Osaka Prefecture University, Graduate School of Engineering has developed a method to design and control the path of electron flow in a polycrystalline material and have realized a thin film material that shows high conductivity in a controllable direction. Their work was reported on June 4th, 2021, in the Journal of Materials Chemistry A.
First, consider the electron flow created by the interaction between the host MOF and its guest molecules. Imagine a host material made up of a same-shaped crystal - like a pristine single-crystal conductor. As the entire mass is one shape, there would be no gaps between its guest molecules and thus great conductivity. The downside is that processing this material to manufacture other devices would require high temperatures and pressure and precise control of the atmosphere to maintain its uniform shape. So far this has proved unpractical. A polycrystalline material is made up of small crystals of varying size and shape. This frees it of same hurdle of maintaining a uniform shape during processing, making it a candidate material for the manufacture of a wide range of next-gen thin film devices. However, "to exhibit similar conductivity functions as single crystals, we would need a method of aligning the crystal grains without gaps" states Associate Professor Kenji Okada.
These crystal grains in MOFs are like molecular-sized pores that can accommodate specific molecules at a specific orientation and spacing. Instead of figuring out how to align the shape of each pore to each molecule to facilitate conductivity, the team focused on the regularities of the surface hydroxyl groups of the metal hydroxides. Using a combination of lattice matching and interface bonding, the team determined two types of orientation relationships, or conductive paths, and realized an orientation where the in-plane path was 10 times more conductive than the other.
"By combining the epitaxial growth approach with UV lithography technology," states Professor Takahashi, "we were able to create oriented semiconducting polycrystalline MOF films regardless to the shape of the individual crystals."
INFORMATION:
Paper title: Oriented growth of semiconducting TCNQ@Cu3(BTC)2 MOF on Cu(OH)2: crystallographic orientation and pattern formation toward semiconducting thin-film devices
About Osaka Prefecture University, Japan
Osaka Prefecture University (OPU) is one of the largest public universities in Japan.
OPU comprises three campuses, with a main campus in Sakai, Osaka. With four colleges for undergraduate students and seven graduate schools, the university offers stellar education in a myriad of fields like engineering, life and environmental sciences, science, economics, humanities and social sciences, and nursing. Not just this, the university also houses various international students, who can enrich their lives with opportunities for internships and exchange programs.
In April 2022, OPU will unite with Osaka City University (OCU) to form Japan's largest public university, Osaka Metropolitan University (tentative name).
For more details, please visit:
Osaka Prefecture University (OPU): https://www.osakafu-u.ac.jp/en
Osaka Metropolitan University (tentative name): https://www.upc-osaka.ac.jp/new-univ/en-research/
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-07-06
Philadelphia and Santiago -A new study published in The Lancet Global Health showed that establishing safe nurse staffing standards in hospitals in Chile could save lives, prevent readmissions, shorten hospital stays, and reduce costs.
The study, by the Center for Health Outcomes and Policy Research (CHOPR) at the University of Pennsylvania School of Nursing, and the Universidad de los Andes - Chile School of Nursing, found very large variations in patient to nurse staffing across 40 hospitals located throughout Chile. Nurse staffing was significantly ...
2021-07-06
SAN ANTONIO -- July 6, 2021 -- Scientists have used data from the Southwest Research Institute-led Magnetospheric Multiscale (MMS) mission to explain the presence of energetic heavy elements in galactic cosmic rays (GCRs). GCRs are composed of fast-moving energetic particles, mostly hydrogen ions called protons, the lightest and most abundant elements in the universe. Scientists have long debated how trace amounts of heavy ions in GCRs are accelerated.
The supernova explosion of a dying star creates massive shockwaves that propagate through the surrounding space, accelerating ions in their path to very high energies, creating ...
2021-07-06
A research group at the University of Cordoba has conducted study focused on evaluating the potential of the Sentinel-2 sensor system's configuration to predict the amount of forage on permanent Mediterranean grasslands.
Pasture quality assessment in permanent grasslands is essential for their conservation and management, as it can facilitate real-time decision-making regarding livestock management. In this regard, the Sentinel-2 satellite constellation, launched in 2015, has proven to be a promising tool for permanent grassland monitoring. This is a sensor system developed by the European Space Agency (ESA) and that provides free and available data worldwide, with a review time of five days, and 13 spectral bands. The spectral configuration of Sentinel-2, ...
2021-07-06
Scientists from the European Molecular Biology Laboratory (EMBL) and the German Cancer Research Center (DKFZ) have presented a new method for generating metabolic profiles of individual cells. The method, which combines fluorescence microscopy and a specific form of mass spectroscopy, can analyze over a hundred metabolites and lipids from more than a thousand individual cells per hour. Researchers expect the method to better answer a variety of biomedical questions in the future.
Today, many biomedical disciplines focus their attention on the metabolites of individual cells. While in the past these were considered simply as degradation products or else building blocks for the synthesis of complex cellular molecules, ...
2021-07-06
Changes in the colour and intensity of light pollution over the past few decades result in complex and unpredictable effects on animal vision, new research shows.
Insect attraction to light is a well-known phenomenon, but artificial lighting can also have more subtle consequences for species that rely on night-time vision for their behaviour.
To explore these effects, University of Exeter researchers examined the impact of more than 20 kinds of lighting on the vision of moths, and birds that eat them.
The study found that elephant hawkmoth vision was enhanced by some types of lighting and disrupted by others, while the vision of birds ...
2021-07-06
While atomic force microscopy and scanning electron microscopy have already provided information on the morphology of bitumen surfaces in the past, for a long time it was not known whether surface and chemical composition correlate with each other. However, the chemical composition of the surface is of particular interest because oxidation processes take place there, triggered by oxygen-containing molecules in the air such as ozone, nitrogen oxides or hydroxyl radicals. The oxidation process accelerates the aging of the material - the bitumen becomes porous and damage develops.
The materials ...
2021-07-06
Metals with similar chemical properties are usually extracted together, which limits the opportunities to separate high-purity metals. To increase those opportunities, it's important to understand how different metal species act during the solvent extraction process.
Researchers from the Institute of Process Engineering (IPE), of the Chinese Academy of Sciences, have developed a new strategy to characterise polymeric transition metal species in acidic solution, which may help to separate those high-purity metals.
Their study, which was published in the KeAi journal Green Chemical Engineering (GreenChE) employed a high-resolution electrospray ionization ...
2021-07-06
A multidisciplinary research team, led by the CSIC biologist at CRAG, Ana I. Caño Delgado, and the physicist from the University of Barcelona, Marta Ibañes, has discovered that two plant stem cell proteins, known for their role in the correct development of the root, physically interact and regulate each other to avoid cellular division. The study, result of fifteen years of continued research carried out by the two researchers, reveals that these two proteins, known as BRAVO and WOX5, act in a specific manner in a small group of stem cells, and that their interaction is key to the plant's survival under genomic and environmental stress factors like extreme cold, heat, or floods. The results, obtained with the model plant Arabidopsis thaliana, have recently been published in the ...
2021-07-06
A team of researchers at the Department of Chemistry and Pharmacy at Friedrich-Alexander University Erlangen-Nürnberg (FAU) has successfully solved the problem of finding a straightforward, cost-effective process for producing hexaarylbenzene molecules with six different aromatic rings. These molecules are important functional materials. The results were published in the reputable journal Angewandte Chemie.
Until now, it has been possible to use certain chemical procedures to produce simple, symmetrical hexaarylbenzene (HAB) molecules, in which the hydrogen atoms of the benzene are replaced by the same atomic groups. However, only very little HAB was produced in this way.
The team of researchers led by Prof. Dr. Svetlana Tsogeva and Prof. Dr. Norbert Jux, both professors of organic ...
2021-07-06
The paper describes amperometric biosensors developed for the determination of diclofenac based on planar platinum electrodes modified with carbon nanotubes (CNTs) in chitosan, fullerene C60 in Boltorn H20, gold nanoparticles (Au NPs) in chitosan, and immobilized tyrosinase enzyme. It was found that diclofenac is a reversible tyrosinase inhibitor (a decrease in the analytical signal is observed), which makes it possible to determine it using appropriate biosensors modified with nanomaterials in the concentration range from 10 pM to 1 μM with CH 5 pM. Modification with composites of CNT / Au NPs and fullerene C60 / Au NPs made it possible to improve the analytical characteristics of the developed biosensors, in particular, ...
LAST 30 PRESS RELEASES:
[Press-News.org] Falling in line: The simple design and control of MOF electric flow
Osaka Prefecture University develops a method to design and control the path of electron flow in a polycrystalline material