PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Muscles retain positional memory from fetal life

New perspectives on the pathological mechanisms of muscle diseases and regenerative medicine development

Muscles retain positional memory from fetal life
2021-07-06
(Press-News.org) A research collaboration based in Kumamoto University, Japan has discovered that muscles and the resident stem cells (satellite cells) responsible for muscle regeneration retain memory of their location in the body. This positional memory was found to be based on the expression pattern of the homeobox (Hox) gene cluster, which is responsible for shaping the body during fetal life. These findings are expected to provide clues to elucidate the pathogenesis of muscle diseases such as muscular dystrophy, in which the position of muscle vulnerability varies depending on the type of muscle, and to help develop regenerative medicine based on positional memory.

There are various types of the intractable muscle disease muscular dystrophy and each type has a different symptom location. Similarly, age-related muscle fragility (sarcopenia) does not occur evenly throughout the body. The physical location of the symptoms of these diseases cannot be explained by differences in muscle fiber types or physical activity patterns alone, and requires a new perspective to elucidate their respective pathogeneses.

The developmental origin of cells that form muscles differ in the fetal stage. For example, most of the craniofacial muscles originate from the cranial mesoderm, while the limb muscles originate from the body segments. Development of limb and craniofacial muscles in the fetal period involves specific molecular mechanisms that depends on their origin. However, differences in the properties of mature skeletal muscle depending on body position after birth have not been fully discussed. Thus, a research collaboration worked to visualize the body's positional information by studying the epigenomic state and gene expression patterns of skeletal muscle and the muscle stem cells responsible for regeneration.

Using skeletal muscle and associated muscle stem cells isolated from the heads and hind limbs of adult mice, researchers investigated positional specificity at the epigenomic level using DNA methylome analysis. They found characteristic differences in the DNA methylation status at the homeobox (Hox) loci. Among four regions, A to D, the Hox-A locus in particular had an overall DNA hypermethylation state in hindlimb skeletal muscle and muscle stem cells compared to the head. Additionally, both skeletal muscle and muscle stem cells in the hind limbs showed high expression of the Hox-A gene. Many of these Hox-A genes reflected expression patterns in the fetal period. These findings suggest that skeletal muscle and muscle stem cells remember positional information during fetal life, and that epigenomic regulation by DNA methylation may be involved in positional memory.

The researchers then focused on the Hoxa10 gene, which was highly expressed only in the limb muscles. When hindlimb-derived muscle stem cells expressing Hoxa10 were isolated and transplanted into craniofacial muscles that do not express Hoxa10, Hoxa10 gene expression became detectable in the craniofacial muscles. In other words, hindlimb-derived muscle stem cells were able to innervate the craniofacial muscle with strong retention of positional memory even after ectopic transplantation.

They then created mice lacking the Hoxa10 gene in muscle stem cells to analyze its function. A Hoxa10 deficiency severely impaired the regeneration of hindlimb muscles but had no effect on craniofacial muscle regeneration. A detailed investigation of the mechanism behind the hindlimb muscle regeneration disorder revealed that it is caused by genomic instability due to abnormal chromosome distribution during muscle stem cell division. Furthermore, analysis of human head and leg muscle stem cells also showed that only leg muscle cells expressed the HOX-A gene and that its inhibition resulted in abnormal cell division, confirming that muscle cell positional memory is retained in humans and mice.

This research suggest that the positional memory of muscle stem cells based on the position-specific distribution of Hox gene expression may determine the position-specific properties of skeletal muscle, rather than merely persisting from fetal life.

"In the future, we expect that the functional aspects of muscle stem cell positional memory will lead to the clarification of the mechanisms that lead to location-specificity of symptoms that are observed in various muscle diseases like muscular dystrophy," said Associate Professor Yusuke Ono, who led the study. "In addition, ectopic transplantation experiments, in which muscle stem cells are transplanted to a location different from where they were harvested, have shown that they maintain positional memory and regenerate. From a different perspective, skeletal muscles regenerated from xenotransplantation may not possess their original positional information which may impair their normal function. There has been rapid progress recently in the differentiation of iPS cells into various progenitor cells and the development of mass culture techniques, but the location of induced progenitor cells has not been considered. In the future, our group will attempt to develop regenerative therapy applications for muscle diseases by artificially controlling the positional memory of cells and by utilizing the properties of cells with positional memory in the right places."

INFORMATION:

This research was posted online in Science Advances on 9 June 2021.

Source: Yoshioka, K., Nagahisa, H., Miura, F., Araki, H., Kamei, Y., Kitajima, Y., ... Ono, Y. (2021). Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. Science Advances, 7(24), eabd7924. doi:10.1126/sciadv.abd7924


[Attachments] See images for this press release:
Muscles retain positional memory from fetal life

ELSE PRESS RELEASES FROM THIS DATE:

Sodium solid electrolyte combining high conductivity with electrochemical stability

Sodium solid electrolyte combining high conductivity with electrochemical stability
2021-07-06
Overview: A research team from the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology developed a chlorine (Cl) substituted Na3SbS4 solid electrolyte for use in all-solid-state sodium (Na) ion batteries. Compared to the sample without a Cl substitution, the ionic conductivity of the Na3SbS4 solid electrolyte where sulfur (S) was partially substituted with Cl improved by up to three times. The team also demonstrated that the Cl-substituted Na3SbS4 has a crystal structure framework that allows Na ions to move easier ...

Non-stop signal achieved in high-power Er3+-doped mid-infrared lasers

Non-stop signal achieved in high-power Er3+-doped mid-infrared lasers
2021-07-06
The Mid-infrared lasers (MIR) with high peak power and high repetition rate operating in the range of 2.7~3 μm have important application in laser surgery and optical parametric oscillator (OPO). A recent study conducted by SUN Dunlu's research group at the Hefei Institutes of Physical Science(HFIPS) of the Chinese Academy of Sciences (CAS) achieved high power, high efficiency and quasi-continuous mid-infrared laser in the free running and langasite [La3 Ga5 SiO14 (LGS)] Q-switched modes by using the Er3+ ions-doped YAP crystals as laser gain medium. Based on their previous research work on laser, the researchers further improved the laser performance of Er:YAP laser crystal by laser-diode (LD) side-pumping method, a Er:YAP crystal ...

Counting sheep and still awake? Mindfulness therapy may help bring on the zzz's

2021-07-06
Sleep problems are common in the general population with up to half of Singaporean adults reporting insufficient or unsatisfying sleep. Sleep quality tends to worsen with age and poor sleep is a modifiable risk factor for multiple disorders, including cardiovascular disease and cognitive impairment. Currently, insomnia is treated with either medication or psychological interventions. However, even frontline treatments such as cognitive-behavioural therapy have limitations - up to 40% of patients do not get relief from their insomnia symptoms after undergoing ...

Wallonia as an international reference for the timeline

Wallonia as an international reference for the timeline
2021-07-06
In 2016, researchers from the EDDyLab - Evolution & Diversity Dynamics Lab - at the University of Liège (Belgium) proposed a new definition of the geological boundary between the Devonian and Carboniferous periods (359 million years). This new definition has been tested by hundreds of researchers around the world and the results are now compiled in a special issue of the journal Palaeodiversity & Palaeoenvironments. Geological time is divided into periods (Cambrian, Carboniferous, Jurassic, etc.), together covering the 4.6 billion year history of the Earth. The many climatic, environmental and biological changes that have punctuated this history are recorded in the rock layers, forming an incredibly rich archive of the Earth's past. "The study of these successive ...

Why does Mercury have a big iron core?

Why does Mercury have a big iron core?
2021-07-06
Scientists from Tohoku University and the University of Maryland have pinpointed the strong magnetic field of the early sun as the reason behind the radial variation of rock and metal in rocky planets' cores. This magnetic field, which pulled small iron grains inward, explains Mercury's big iron core and why Mars has so little iron in its core. The details of their research were published in the journal Progress in Earth and Planetary Science on July 5, 2021. Planets have iron cores surrounded by a rocky shell, mostly made up of mantle and a thin skin of crust. The four inner planets of our Solar System, Mercury, Venus, Earth, and Mars have their own distinctive size and density. These ...

Singlet oxygen selectively degrades oxytetracycline in fenton-like oxidation

Singlet oxygen selectively degrades oxytetracycline in fenton-like oxidation
2021-07-06
Recently, a research team led by Prof. KONG Lingtao at the Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences (CAS) has prepared a type of hollow amorphous Co/C composites to activate hydrogen peroxide (H2O2) to generate singlet oxygen, achieving selective elimination of oxytetracycline (OTC) in complicated water matrices. The relevant results was published in Chemical Engineering Journal. OTC is the most common tetracycline antibiotic in the field of animal husbandry. It can be detected in water, soil and other areas which features ...

More and more older people suffer a traumatic brain injury due to falls

2021-07-06
The study is the first on epidemiology and causes of traumatic brain injury in over 20 years. The research team reports in the journal BMJ Open of 4 June 2021. Falling and cycling without a helmet are common causes From a minor fall on a bicycle to a serious road traffic accident: The causes of a traumatic brain injury are manifold. About 90 percent of the approximately 270,000 cases per year are classified as mild, ten percent as moderate or severe. Current findings show that traumatic brain injury is increasing in the age group of over-65s. The research team at BG Kliniken in Bochum, Hamburg, Berlin, Halle, Frankfurt, Ludwigshafen and Murnau found that there has been a shift in the age group most frequently affected and ...

Aryl radical formation by aryl halide bond cleavage by N-heterocyclic carbene catalyst

Aryl radical formation by aryl halide bond cleavage by N-heterocyclic carbene catalyst
2021-07-06
[Background] Aryl halides*1) with a benzene ring directly bonded to a halogen atom are readily available and chemically stable, so they are used as a source of benzene rings in organic synthesis. For example, a chemical reaction that generates a highly reactive aryl radical*2) from an aryl halide using a toxic tin compound has long been known as a method for supplying a benzene ring (Figure 1A). In recent years, chemical reactions have been developed, in which an aryl halide is reduced using a metal catalyst or a photocatalyst*3) followed by cleavage of the bond between the benzene ring and the halogen atom to generate ...

AID/APOBECs among important factors in body's defence against SARS-CoV-2

2021-07-06
Together with their multifaceted action mechanisms, activation-induced cytidine deaminase (AID) and so-called APOBEC proteins are important factors in the body's immune response and offer fast and effective protection against a large number of DNA and RNA viruses. The task of AID is to strengthen the human immune response, while APOBECs are able to block the virus. A MedUni Vienna research team comprising Anastasia Meshcheryakova, Diana Mechtcheriakova and Peter Pietschmann from the Institute of Pathophysiology and Allergy Research has now addressed the potential interrelations between AID/APOBECs and the SARS-CoV-2 virus, ...

Tiny tweaks to sparkle: Editing light-emitting organic molecules via surface modification

Tiny tweaks to sparkle: Editing light-emitting organic molecules via surface modification
2021-07-06
Ishikawa, Japan - Many researchers in the field of materials science constantly seek novel and versatile platforms that can be used to tailor materials to match their intended use. One example of this are covalent organic frameworks (COFs), an emerging class of crystalline porous polymers with a favorable set of fundamental properties, namely crystallinity, stability, and porosity. This combination makes them, in theory, adjustable to many modern applications. Unfortunately, owing to the way COFs are usually obtained, these properties are not very pronounced, resulting in unstable, low-crystallinity solids with limited porosity. At the Japan Advanced Institute of ...

LAST 30 PRESS RELEASES:

The next evolution of AI begins with ours

Using sunlight to recycle black plastics

ODS FeCrAl alloys endure liquid metal flow at 600 °C resembling a fusion blanket environment

A genetic key to understanding mitochondrial DNA depletion syndrome

The future of edge AI: Dye-sensitized solar cell-based synaptic device

Bats’ amazing plan B for when they can’t hear

Common thyroid medicine linked to bone loss

Vaping causes immediate effects on vascular function

A new clock to structure sleep

Study reveals new way to unlock blood-brain barrier, potentially opening doors to treat brain and nerve diseases

Viking colonizers of Iceland and nearby Faroe Islands had very different origins, study finds

One in 20 people in Canada skip doses, don’t fill prescriptions because of cost

Wildlife monitoring technologies used to intimidate and spy on women, study finds

Around 450,000 children disadvantaged by lack of school support for color blindness

Reality check: making indoor smartphone-based augmented reality work

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Black men — including transit workers — are targets for aggression on public transportation, study shows

Troubling spike in severe pregnancy-related complications for all ages in Illinois

Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas

Need a landing pad for helicopter parenting? Frame tasks as learning

New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability

#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all

Earliest fish-trapping facility in Central America discovered in Maya lowlands

São Paulo to host School on Disordered Systems

New insights into sleep uncover key mechanisms related to cognitive function

USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery

Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance

3D-printing advance mitigates three defects simultaneously for failure-free metal parts 

Ancient hot water on Mars points to habitable past: Curtin study

In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon

[Press-News.org] Muscles retain positional memory from fetal life
New perspectives on the pathological mechanisms of muscle diseases and regenerative medicine development