PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Teardrop star reveals hidden supernova doom

International team led by University of Warwick makes rare sighting of a binary star system heading towards supernova

Teardrop star reveals hidden supernova doom
2021-07-12
(Press-News.org) Astronomers have made the rare sighting of two stars spiralling to their doom by spotting the tell-tale signs of a teardrop-shaped star.

The tragic shape is caused by a massive nearby white dwarf distorting the star with its intense gravity, which will also be the catalyst for an eventual supernova that will consume both. Found by an international team of astronomers and astrophysicists led by the University of Warwick, it is one of only very small number of star systems that has been discovered that will one day see a white dwarf star reignite its core.

New research published by the team today (12 July) in Nature Astronomy confirms that the two stars are in the early stages of a spiral that will likely end in a Type Ia supernova, a type that helps astronomers determine how fast the universe is expanding.

This research received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the Science and Technology Facilities Council, part of UK Research and Innovation.

HD265435 is located roughly 1,500 light years away and comprises a hot subdwarf star and a white dwarf star orbiting each other closely at a rate of around 100 minutes. White dwarfs are 'dead' stars that have burnt out all their fuel and collapsed in on themselves, making them small but extremely dense.

A type Ia supernova is generally thought to occur when a white dwarf star's core reignites, leading to a thermonuclear explosion. There are two scenarios where this can happen. In the first, the white dwarf gains enough mass to reach 1.4 times the mass of our Sun, known as the Chandrasekhar limit. HD265435 fits in the second scenario, in which the total mass of a close stellar system of multiple stars is near or above this limit. Only a handful of other star systems have been discovered that will reach this threshold and result in a Type Ia supernova.

Lead author Dr Ingrid Pelisoli from the University of Warwick Department of Physics, and formerly affiliated with the University of Potsdam, explains: "We don't know exactly how these supernovae explode, but we know it has to happen because we see it happening elsewhere in the universe.

"One way is if the white dwarf accretes enough mass from the hot subdwarf, so as the two of them are orbiting each other and getting closer, matter will start to escape the hot subdwarf and fall onto the white dwarf. Another way is that because they are losing energy to gravitational wave emissions, they will get closer until they merge. Once the white dwarf gains enough mass from either method, it will go supernova."

Using data from NASA's Transiting Exoplanet Survey Satellite (TESS), the team were able to observe the hot subdwarf, but not the white dwarf as the hot subdwarf is much brighter. However, that brightness varies over time which suggested the star was being distorted into a teardrop shape by a nearby massive object. Using radial velocity and rotational velocity measurements from the Palomar Observatory and the W. M. Keck Observatory, and by modelling the massive object's effect on the hot subdwarf, the astronomers could confirm that the hidden white dwarf is as heavy as our Sun, but just slightly smaller than the Earth's radius.

Combined with the mass of the hot subdwarf, which is a little over 0.6 times the mass of our Sun, both stars have the mass needed to cause a Type Ia supernova. As the two stars are already close enough to begin spiralling closer together, the white dwarf will inevitably go supernova in around 70 million years. Theoretical models produced specifically for this study predict that the hot subdwarf will contract to become a white dwarf star as well before merging with its companion.

Type Ia supernovae are important for cosmology as 'standard candles'. Their brightness is constant and of a specific type of light, which means astronomers can compare what luminosity they should be with what we observe on Earth, and from that work out how distant they are with a good degree of accuracy. By observing supernovae in distant galaxies, astronomers combine what they know of how fast this galaxy is moving with our distance from the supernova and calculate the expansion of the universe.

Dr Pelisoli adds: "The more we understand how supernovae work, the better we can calibrate our standard candles. This is very important at the moment because there's a discrepancy between what we get from this kind of standard candle, and what we get through other methods.

"The more we understand about how supernovae form, the better we can understand whether this discrepancy we are seeing is because of new physics that we're unaware of and not taking into account, or simply because we're underestimating the uncertainties in those distances.

"There is another discrepancy between the estimated and observed galactic supernovae rate, and the number of progenitors we see. We can estimate how many supernovae are going to be in our galaxy through observing many galaxies, or through what we know from stellar evolution, and this number is consistent. But if we look for objects that can become supernovae, we don't have enough. This discovery was very useful to put an estimate of what a hot subdwarf and white dwarf binaries can contribute. It still doesn't seem to be a lot, none of the channels we observed seems to be enough."

INFORMATION:

* 'A hot subdwarf-white dwarf super-Chandrasekhar candidate supernova Ia progenitor ' will be published in Nature Astronomy, DOI: 10.1038/s41550-021-01413-0 Link: https://www.nature.com/articles/s41550-021-01413-0 (to go live after embargo)

Notes to editors:

Artist's impression of the HD265435 system available to download at the link below. Images are free for use if used in direct connection with this story but image copyright and credit must be University of Warwick/Mark Garlick: https://warwick.ac.uk/services/communications/medialibrary/images/july_2021/progenitor.jpg

Caption: Artist's impression of the HD265435 system at around 30 million years from now, with the smaller white dwarf distorting the hot subdwarf into a distinct 'teardrop' shape. Credit: University of Warwick/Mark Garlick

For interviews or a copy of the paper contact: Tom Frew
Senior Press and Media Relations Manager
E: a.t.frew@warwick.ac.uk
M: +44(0)7785433155

Or

Peter Thorley
Media Relations Manager (Warwick Medical School and Department of Physics) | Press & Media Relations | University of Warwick
Email: peter.thorley@warwick.ac.uk
Mob: +44 (0) 7824 540863

The Science and Technology Facilities Council (STFC) The Science and Technology Facilities Council (STFC) is part of UK Research and Innovation - the UK body which works in partnership with universities, research organisations, businesses, charities, and government to create the best possible environment for research and innovation to flourish. For more information visit UK Research and Innovation.

STFC funds and supports research in particle and nuclear physics, astronomy, gravitational research and astrophysics, and space science and also operates a network of five national laboratories, including the Rutherford Appleton Laboratory and the Daresbury Laboratory, as well as supporting UK research at a number of international research facilities including CERN, FERMILAB, the ESO telescopes in Chile and many more. Visit https://stfc.ukri.org/ for more information. @STFC_Matters


[Attachments] See images for this press release:
Teardrop star reveals hidden supernova doom

ELSE PRESS RELEASES FROM THIS DATE:

First actionable clock that predicts immunological health and chronic diseases of aging

2021-07-12
Researchers from the Buck Institute and Stanford University have created an inflammatory clock of aging (iAge) which measures inflammatory load and predicts multi-morbidity, frailty, immune health, cardiovascular aging and is also associated with exceptional longevity in centenarians. Utilizing deep learning, a form of AI, in studies of the blood immunome of 1001 people, researchers also identified a modifiable chemokine associated with cardiac aging which can be used for early detection of age-related pathology and provides a target for interventions. Results are published in Nature Aging. "Standard immune metrics which can be used to identify individuals most at risk for developing single or even multiple chronic diseases ...

Coastal ecosystems worldwide: Billion-dollar carbon reservoirs

2021-07-12
According to the study, Australia, Indonesia and the USA provide the largest carbon storage potential with their coastal ecosystems. The team also calculated which countries benefit most from the coastal CO2 uptake worldwide. The different ways in which countries are affected by climate change are quantified by using the so-called social costs of carbon. "If we take into account the differences in marginal climate damages that occur in each country, we find that Australia and Indonesia are clearly the largest donors in terms of globally avoided climate damages originating from coastal CO2 uptake, as they themselves derive comparatively little benefit ...

Haziness of exoplanet atmospheres depends on properties of aerosol particles

Haziness of exoplanet atmospheres depends on properties of aerosol particles
2021-07-12
Many exoplanets have opaque atmospheres, obscured by clouds or hazes that make it hard for astronomers to characterize their chemical compositions. A new study shows that haze particles produced under different conditions have a wide range of properties that can determine how clear or hazy a planet's atmosphere is likely to be. Photochemical reactions in the atmospheres of temperate exoplanets lead to the formation of small organic haze particles. Large amounts of these photochemical hazes form in Earth's atmosphere every day, yet our planet has relatively clear skies. The reason has to do with how ...

A fermented-food diet increases microbiome diversity and lowers inflammation, study finds

2021-07-12
A diet rich in fermented foods enhances the diversity of gut microbes and decreases molecular signs of inflammation, according to researchers at the Stanford School of Medicine. In a clinical trial, 36 healthy adults were randomly assigned to a 10-week diet that included either fermented or high-fiber foods. The two diets resulted in different effects on the gut microbiome and the immune system. Eating foods such as yogurt, kefir, fermented cottage cheese, kimchi and other fermented vegetables, vegetable brine drinks, and kombucha tea led to an increase in overall microbial diversity, with stronger effects from larger servings. ...

Immune system 'clock' predicts illness and mortality

2021-07-12
You're as old as your immune system. Investigators at the Stanford University School of Medicine and the Buck Institute for Research on Aging have built an inflammatory-aging clock that's more accurate than the number of candles on your birthday cake in predicting how strong your immune system is, how soon you'll become frail or whether you have unseen cardiovascular problems that could become clinical headaches a few years down the road. In the process, the scientists fingered a bloodborne substance whose abundance may accelerate cardiovascular aging. The story of the clock's creation will be published July 12 in Nature Aging. "Every year, the calendar tells us we're a year older," said David ...

Human environmental genome recovered in the absence of skeletal remains

Human environmental genome recovered in the absence of skeletal remains
2021-07-12
The cave of Satsurblia was inhabited by humans in different periods of the Paleolithic: Up to date a single human individual dated from 15,000 years ago has been sequenced from that site. No other human remains have been discovered in the older layers of the cave. The innovative approach used by the international team led by Prof. Ron Pinhasi and Pere Gelabert with Susanna Sawyer of the University of Vienna in collaboration with Pontus Skoglund and Anders Bergström of the Francis Crick Institute in London permits the identification of DNA in samples of environmental ...

Progress towards new treatments for tuberculosis

Progress towards new treatments for tuberculosis
2021-07-12
Boosting the body's own disease-fighting immune pathway could provide answers in the desperate search for new treatments for tuberculosis. Tuberculosis still represents an enormous global disease burden and is one of the top 10 causes of death worldwide. Led by WEHI's Dr Michael Stutz and Professor Marc Pellegrini and published in Immunity, the study uncovered how cells infected with tuberculosis bacteria can die, and that using new medicines to enhance particular forms of cell death decreased the severity of the disease in a preclinical model. At a glance Researchers were able to demonstrate that cells infected with tuberculosis bacteria have functional ...

Naturally abundant venom peptide from ants can activate a pseudo allergic pathway unravelling a novel immunomodulatory pathway of MRGPRX2

Naturally abundant venom peptide from ants can activate a pseudo allergic pathway unravelling a novel immunomodulatory pathway of MRGPRX2
2021-07-12
Ants are omnipresent, and we often get blisters after an ant bite. But do you know the molecular mechanism behind it? A research team led by Professor Billy K C CHOW from the Research Division for Molecular and Cell Biology, Faculty of Science, the University of Hong Kong (HKU), in collaboration with Dr Jerome LEPRINCE from The Institut national de la santé et de la recherche médicale (INSERM) and Professor Michel TREILHOU from the Institut National Universitaire Champollion in France, have identified and demonstrated a novel small peptide isolated from the ant venom can initiate an immune pathway via a pseudo-allergic receptor MRGPRX2. The study ...

Sea-level rise may worsen existing Bay Area inequities

Sea-level rise may worsen existing Bay Area inequities
2021-07-12
Rather than waiting for certainty in sea-level rise projections, policymakers can plan now for future coastal flooding by addressing existing inequities among the most vulnerable communities in flood zones, according to Stanford research. Using a methodology that incorporates socioeconomic data on neighborhood groups of about 1,500 people, scientists found that several coastal communities in San Mateo County, California - including half the households in East Palo Alto - are at risk of financial instability from existing social factors or anticipated flooding through 2060. Even with coverage from flood insurance, these residents would not be able to pay for damages from flooding, which could lead to homelessness or bankruptcy ...

People given 'friendly' bacteria in nose drops protected against meningitis

2021-07-12
Led by Professor Robert Read and Dr Jay Laver from the NIHR Southampton Biomedical Research Centre and the University of Southampton, the work is the first of its kind. Together they inserted a gene into a harmless type of a bacteria, that allows it to remain in the nose and trigger an immune response. They then introduced these bacteria into the noses of healthy volunteers via nose drops. The results, published in the journal Science Translational Medicine, showed a strong immune response against bacteria that cause meningitis. Published in ...

LAST 30 PRESS RELEASES:

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

Neuroscience leader reveals oxytocin's crucial role beyond the 'love hormone' label

Twelve questions to ask your doctor for better brain health in the new year

Microelectronics Science Research Centers to lead charge on next-generation designs and prototypes

Study identifies genetic cause for yellow nail syndrome

New drug to prevent migraine may start working right away

Good news for people with MS: COVID-19 infection not tied to worsening symptoms

Department of Energy announces $179 million for Microelectronics Science Research Centers

Human-related activities continue to threaten global climate and productivity

Public shows greater acceptance of RSV vaccine as vaccine hesitancy appears to have plateaued

Unraveling the power and influence of language

Gene editing tool reduces Alzheimer’s plaque precursor in mice

TNF inhibitors prevent complications in kids with Crohn's disease, recommended as first-line therapies

Twisted Edison: Bright, elliptically polarized incandescent light

Structural cell protein also directly regulates gene transcription

Breaking boundaries: Researchers isolate quantum coherence in classical light systems

Brain map clarifies neuronal connectivity behind motor function

Researchers find compromised indoor air in homes following Marshall Fire

Months after Colorado's Marshall Fire, residents of surviving homes reported health symptoms, poor air quality

Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology

'Glass fences' hinder Japanese female faculty in international research, study finds

Vector winds forecast by numerical weather prediction models still in need of optimization

New research identifies key cellular mechanism driving Alzheimer’s disease

Trends in buprenorphine dispensing among adolescents and young adults in the US

Emergency department physicians vary widely in their likelihood of hospitalizing a patient, even within the same facility

Firearm and motor vehicle pediatric deaths— intersections of age, sex, race, and ethnicity

[Press-News.org] Teardrop star reveals hidden supernova doom
International team led by University of Warwick makes rare sighting of a binary star system heading towards supernova