PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

New additives could turn concrete into an effective carbon sink

MIT engineers discover new carbonation pathways for creating more environmentally friendly concrete

2023-03-28
(Press-News.org) CAMBRIDGE, MA -- Despite the many advantages of concrete as a modern construction material, including its high strength, low cost, and ease of manufacture, its production currently accounts for approximately 8 percent of global carbon dioxide emissions.

Recent discoveries by a team at MIT have revealed that introducing new materials into existing concrete manufacturing processes could significantly reduce this carbon footprint, without altering concrete’s bulk mechanical properties.

The findings are published today in the journal PNAS Nexus, in a paper by MIT professors of civil and environmental engineering Admir Masic and Franz-Josef Ulm, MIT postdoc Damian Stefaniuk and doctoral student Marcin Hajduczek, and James Weaver from Harvard University’s Wyss Institute.

After water, concrete is the world’s second most consumed material, and represents the cornerstone of modern infrastructure. During its manufacturing, however, large quantities of carbon dioxide are released, both as a chemical byproduct of cement production and in the energy required to fuel these reactions. 

Approximately half of the emissions associated with concrete production come from the burning of fossil fuels such as oil and natural gas, which are used to heat up a mix of limestone and clay that ultimately becomes the familiar gray powder known as ordinary Portland cement (OPC). While the energy required for this heating process could eventually be substituted with electricity generated from renewable solar or wind sources, the other half of the emissions is inherent in the material itself: As the mineral mix is heated to temperatures above 1,400 degrees Celsius (2,552 degrees Fahrenheit), it undergoes a chemical transformation from calcium carbonate and clay to a mixture of clinker (consisting primarily of calcium silicates) and carbon dioxide — with the latter escaping into the air.

When OPC is mixed with water, sand, and gravel material during the production of concrete, it becomes highly alkaline, creating a seemingly ideal environment for the sequestration and long-term storage of carbon dioxide in the form of carbonate materials (a process known as carbonation). Despite this potential of concrete to naturally absorb carbon dioxide from the atmosphere, when these reactions normally occur, mainly within cured concrete, they can both weaken the material and lower the internal alkalinity, which accelerates the corrosion of the reinforcing rebar. These processes ultimately destroy the load-bearing capacity of the building and negatively impact its long-term mechanical performance. As such, these slow late-stage carbonation reactions, which can occur over timescales of decades, have long been recognized as undesirable pathways that accelerate concrete deterioration.

“The problem with these postcuring carbonation reactions,” Masic says, “is that you disrupt the structure and chemistry of the cementing matrix that is very effective in preventing steel corrosion, which leads to degradation.”

In contrast, the new carbon dioxide sequestration pathways discovered by the authors rely on the very early formation of carbonates during concrete mixing and pouring, before the material sets, which might largely eliminate the detrimental effects of carbon dioxide uptake after the material cures. 

The key to the new process is the addition of one simple, inexpensive ingredient: sodium bicarbonate, otherwise known as baking soda. In lab tests using sodium bicarbonate substitution, the team demonstrated that up to 15 percent of the total amount of carbon dioxide associated with cement production could be mineralized during these early stages — enough to potentially make a significant dent in the material’s global carbon footprint.

"It's all very exciting," Masic says, "because our research advances the concept of multifunctional concrete by incorporating the added benefits of carbon dioxide mineralization during production and casting.”

Furthermore, the resulting concrete sets much more quickly via the formation of a previously undescribed composite phase, without impacting its mechanical performance. This process thus allows the construction industry to be more productive: Form works can be removed earlier, reducing the time required to complete a bridge or building.

The composite, a mix of calcium carbonate and calcium silicon hydrate, “is an entirely new material,” Masic says. “Furthermore, through its formation, we can double the mechanical performance of the early-stage concrete.” However, he adds, this research is still an ongoing effort. “While it is currently unclear how the formation of these new phases will impact the long-term performance of concrete, these new discoveries suggest an optimistic future for the development of carbon neutral construction materials.”

While the idea of early-stage concrete carbonation is not new, and there are several existing companies that are currently exploring this approach to facilitate carbon dioxide uptake after concrete is cast into its desired shape, the current discoveries by the MIT team highlight the fact that the precuring capacity of concrete to sequester carbon dioxide has been largely underestimated and underutilized.

“Our new discovery could further be combined with other recent innovations in the development of lower carbon footprint concrete admixtures to provide much greener, and even carbon-negative construction materials for the built environment, turning concrete from being a problem to a part of a solution,” Masic says.

###

The research was supported by the Concrete Sustainability Hub at MIT, which has sponsorship from the Portland Cement Association and the Concrete Research and Education Foundation.

 

END


ELSE PRESS RELEASES FROM THIS DATE:

Fluorescent visualization and evaluation of NPC1L1-mediated cholesterol absorption at the levels of endocytic vesicles

2023-03-28
Excessive cholesterol absorption from intestinal lumen contributes to the pathogenesis of hypercholesterolemia, which is a well-established risk factor for atherosclerotic cardiovascular disease. The absorption of intestinal cholesterol is primarily mediated by Niemann-Pick C1-like 1 (NPC1L1) protein, which is responsible for about 70% cholesterol absorption. NPC1L1-deficient mice are resistant to diet-induced hypercholesterolemia, which provides a compelling strategy for intervention the related diseases through inhibiting NPC1L1 expression or activity. NPC1L1 protein is expressed in the brush border membrane of small intestine. The protein is extensively N-glycosylated ...

Biden-Harris Administration announces recipients of the Enrico Fermi Award

2023-03-28
Today, the Biden-Harris Administration announced Darleane C. Hoffman and Gabor A. Somorjai as recipients of the Enrico Fermi Presidential Award, one of the oldest and most prestigious science and technology honors bestowed by the U.S. government.   “Dr. Hoffman and Dr. Somorjai’s work to open the frontiers of radiochemistry and surface chemistry helped change what was possible, and advanced efforts to tackle some of the world’s greatest challenges,” said Assistant to the President and Director of the White House Office of Science and Technology Policy Arati Prabhakar. “They are world-class ...

We've learned a lot from lymphocytic choriomeningitis virus—now the time has come to fight it

Weve learned a lot from lymphocytic choriomeningitis virus—now the time has come to fight it
2023-03-28
Key findings: There are no vaccines or therapies available for lymphocytic choriomeningitis virus (LCMV) infection. This pathogen spreads easily and is extremely common in people worldwide. Infection with LCMV can cause birth defects in developing fetuses, and severe illness and even death in the immuncompromised. New findings from La Jolla Institute for Immunology (LJI) scientists show how an engineered antibody can target LCMV and neutralize the virus. They found this antibody has the potential to both prevent infection and treat an already established infection. With this better understanding of LCMV's weak spots, scientists can move forward ...

RSV hospitalizations spiked unusually high in late 2021, study finds

2023-03-28
The COVID-19 pandemic posed an immense challenge on the health care industry in 2020 and 2021. While hospitals were inundated with COVID-19 cases, other illnesses such as respiratory syncytial virus (RSV) saw a decrease in hospital visits, particularly in the fourth quarter of 2020 and the first quarter of 2021. A Texas A&M University School of Public Health study recently published in the journal Frontiers found that while there were an unusually low number of hospitalizations in 2020, there was an unusual peak in the third quarter of 2021, when hospital admissions for RSV were approximately twice ...

Tiny yet hazardous: New study shows aerosols produced by contaminated bubble bursting are far smaller than predicted

Tiny yet hazardous: New study shows aerosols produced by contaminated bubble bursting are far smaller than predicted
2023-03-28
A cold sparkling water. Waves crashing on the beach. The crackle of a bonfire. Steam from a kettle. These are not only the makings of a relaxing weekend, but also sources of aerosols in our environment. Though some of these sources of aerosols aren’t much of a concern, aerosols originating from industrial sources, such as wastewater treatment plants, and even natural sources, such as sea spray and dust, have the capacity to make more of an impact on the environment and even public health.   An aerosol ...

Journal advances study of Alzheimer’s caregiving across diverse contexts

2023-03-28
A new supplemental issue to The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences features papers resulting from a gathering of experts that emphasized racial/ethnic and contextual factors in the study of Alzheimer’s disease and related dementias (ADRD) care using a team science approach. According to this journal issue, titled “ADRD Care in Context,” recent estimates indicate that 6.5 million people in the U.S. live with ADRD, and more than 11 million Americans care for people with these conditions, providing 16 billion hours (valued at $271 billion) of unpaid assistance annually. Further, older adults from minoritized ...

Brightest gamma-ray burst ever observed reveals new mysteries of cosmic explosions

Brightest gamma-ray burst ever observed reveals new mysteries of cosmic explosions
2023-03-28
Cambridge, Mass. – On October 9, 2022, an intense pulse of gamma-ray radiation swept through our solar system, overwhelming gamma-ray detectors on numerous orbiting satellites, and sending astronomers on a chase to study the event using the most powerful telescopes in the world.  The new source, dubbed GRB 221009A for its discovery date, turned out to be the brightest gamma-ray burst (GRB) ever recorded.  In a new study that appears today in the Astrophysical Journal Letters, observations of GRB 221009A spanning from radio ...

Chinese space telescopes accurately measure brightest gamma-ray burst ever detected

Chinese space telescopes accurately measure brightest gamma-ray burst ever detected
2023-03-28
At 2AM of March 29, 2023 (Beijing Time), the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS), together with some 40 research institutions worldwide, released their latest discoveries on the brightest Gamma-Ray Burst (dubbed as GRB 221009A) ever detected by human. With the unique observations made by two Chinese space telescopes, namely Insight-HXMT and GECAM-C, scientists were able to accurately measure how bright and how much energy released by this burst, which is the key to understand this historical event. For ...

ORNL-led team designs molecule to disrupt SARS-CoV-2 infection

ORNL-led team designs molecule to disrupt SARS-CoV-2 infection
2023-03-28
A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory designed a molecule that disrupts the infection mechanism of the SARS-CoV-2 coronavirus and could be used to develop new treatments for COVID-19 and other viral diseases. The molecule targets a lesser-studied enzyme in COVID-19 research, PLpro, that helps the coronavirus multiply and hampers the host body’s immune response. The molecule, called a covalent inhibitor, forms a strong chemical bond with its intended protein target and thus increases its effectiveness as an antiviral treatment. “We’re ...

Researchers discover two subtypes of insulin-producing cells

Researchers discover two subtypes of insulin-producing cells
2023-03-28
GRAND RAPIDS, Mich. (March 28, 2023) — A team led by Van Andel Institute and Max Planck Institute of Immunobiology and Epigenetics scientists has identified two distinct subtypes of insulin-producing beta cells, or ß cells, each with crucial characteristics that may be leveraged to better understand and treat Type 1 and Type 2 diabetes.   ß cells are critical guardians of the body’s metabolic balance. They are the only cells capable of producing insulin, which regulates blood sugar levels by designating dietary sugar for immediate use ...

LAST 30 PRESS RELEASES:

NASA’s Parker Solar Probe makes history with closest pass to Sun

Are we ready for the ethical challenges of AI and robots?

Nanotechnology: Light enables an "impossibile" molecular fit

Estimated vaccine effectiveness for pediatric patients with severe influenza

Changes to the US preventive services task force screening guidelines and incidence of breast cancer

Urgent action needed to protect the Parma wallaby

Societal inequality linked to reduced brain health in aging and dementia

Singles differ in personality traits and life satisfaction compared to partnered people

President Biden signs bipartisan HEARTS Act into law

Advanced DNA storage: Cheng Zhang and Long Qian’s team introduce epi-bit method in Nature

New hope for male infertility: PKU researchers discover key mechanism in Klinefelter syndrome

Room-temperature non-volatile optical manipulation of polar order in a charge density wave

Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum

Unlocking the Future of Superconductors in non-van-der Waals 2D Polymers

Starlight to sight: Breakthrough in short-wave infrared detection

Land use changes and China’s carbon sequestration potential

PKU scientists reveals phenological divergence between plants and animals under climate change

Aerobic exercise and weight loss in adults

Persistent short sleep duration from pregnancy to 2 to 7 years after delivery and metabolic health

Kidney function decline after COVID-19 infection

Investigation uncovers poor quality of dental coverage under Medicare Advantage

Cooking sulfur-containing vegetables can promote the formation of trans-fatty acids

How do monkeys recognize snakes so fast?

Revolutionizing stent surgery for cardiovascular diseases with laser patterning technology

Fish-friendly dentistry: New method makes oral research non-lethal

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

[Press-News.org] New additives could turn concrete into an effective carbon sink
MIT engineers discover new carbonation pathways for creating more environmentally friendly concrete