PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A protein mines, sorts rare earths better than humans, paving way for green tech

A protein mines, sorts rare earths better than humans, paving way for green tech
2023-05-31
(Press-News.org) UNIVERSITY PARK, Pa. — Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth’s crust and from one another.

Penn State scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or “dimerize,” when it is bound to certain rare earths, but prefer to remain a single unit, or “monomer,” when bound to others.

By figuring out how this molecular handshake works at the atomic level, the researchers have found a way to separate these similar metals from one another quickly, efficiently, and under normal room temperature conditions. This strategy could lead to more efficient, greener mining and recycling practices for the entire tech sector, the researchers state.

“Biology manages to differentiate rare earths from all the other metals out there — and now, we can see how it even differentiates between the rare earths it finds useful and the ones it doesn’t,” said Joseph Cotruvo Jr., associate professor of chemistry at Penn State and lead author on a paper about the discovery published today (May 31) in the journal Nature. “We’re showing how we can adapt these approaches for rare earth recovery and separation.”

Rare earth elements, which include the lanthanide metals, are in fact relatively abundant, Cotruvo explained, but they are what mineralogists call “dispersed,” meaning they’re mostly scattered throughout the planet in low concentrations.

“If you can harvest rare earths from devices that we already have, then we may not be so reliant on mining it in the first place,” Cotruvo said. However, he added that regardless of source, the challenge of separating one rare earth from another to get a pure substance remains.

“Whether you are mining the metals from rock or from devices, you are still going to need to perform the separation. Our method, in theory, is applicable for any way in which rare earths are harvested,” he said.

All the same — and completely different In simple terms, rare earths are 15 elements on the periodic table — the lanthanides, with atomic numbers 57 to 71 — and two other elements with similar properties that are often grouped with them. The metals behave similarly chemically, have similar sizes, and, for those reasons, they often are found together in the Earth’s crust. However, each one has distinct applications in technologies.

Conventional rare earth separation practices require using large amounts of toxic chemicals like kerosene and phosphonates, similar to chemicals that are commonly used in insecticides, herbicides and flame retardants, Cotruvo explained. The separation process requires dozens or even hundreds of steps, using these highly toxic chemicals, to achieve high-purity individual rare earth oxides.

“There is getting them out of the rock, which is one part of the problem, but one for which many solutions exist,” Cotruvo said. “But you run into a second problem once they are out, because you need to separate multiple rare earths from one another. This is the biggest and most interesting challenge, discriminating between the individual rare earths, because they are so alike. We’ve taken a natural protein, which we call lanmodulin or LanM, and engineered it to do just that.”

Learning from nature Cotruvo and his lab turned to nature to find an alternative to the conventional solvent-based separation process, because biology has already been harvesting and harnessing the power of rare earths for millennia, especially in a class of bacteria called “methylotrophs” that often are found on plant leaves and in soil and water and play an important role in how carbon moves through the environment.

Six years ago, the lab isolated lanmodulin from one of these bacteria, and showed that it was unmatched — over 100 million times better — in its ability to bind lanthanides over common metals like calcium. Through subsequent work they showed that it was able to purify rare earths as a group from dozens of other metals in mixtures that were too complex for traditional rare earth extraction methods. However, the protein was less good at discriminating between the individual rare earths.

Cotruvo explained that for the new study detailed in Nature, the team identified hundreds of other natural proteins that looked roughly like the first lanmodulin but homed in on one that was different enough — 70% different — that they suspected it would have some distinct properties. This protein is found naturally in a bacterium (Hansschlegelia quercus) isolated from English oak buds.

The researchers found that the lanmodulin from this bacterium exhibited strong capabilities to differentiate between rare earths. Their studies indicated that this differentiation came from an ability of the protein to dimerize and perform a kind of handshake. When the protein binds one of the lighter lanthanides, like neodymium, the handshake (dimer) is strong. By contrast, when the protein binds to a heavier lanthanide, like dysprosium, the handshake is much weaker, such that the protein favors the monomer form.

“This was surprising because these metals are very similar in size,” Cotruvo said. “This protein has the ability to differentiate at a scale that is unimaginable to most of us — a few trillionths of a meter, a difference that is less than a tenth of the diameter of an atom.”

Fine-tuning rare earth separations To visualize the process at such a small scale, the researchers teamed up with Amie Boal, Penn State professor of chemistry, biochemistry and molecular biology, who is a co-author on the paper. Boal’s lab specializes in a technique called X-ray crystallography, which allows for high-resolution molecular imaging.

The researchers determined that the protein’s ability to dimerize dependent on the lanthanide to which it was bound came down to a single amino acid — 1% of the whole protein — that occupied a different position with lanthanum (which, like neodymium, is a light lanthanide) than with dysprosium.

Because this amino acid is part of a network of interconnected amino acids at the interface with the other monomer, this shift altered how the two protein units interacted. When an amino acid that is a key player in this network was removed, the protein was much less sensitive to rare earth identity and size. The findings revealed a new, natural principle for fine-tuning rare earth separations, based on propagation of miniscule differences at the rare earth binding site to the dimer interface.  

Using this knowledge, their collaborators at Lawrence Livermore National Laboratory showed that the protein could be tethered to small beads in a column, and that it could separate the most important components of permanent magnets, neodymium and dysprosium, in a single step, at room temperature and without any organic solvents.

“While we are by no means the first scientists to recognize that metal-sensitive dimerization could be a way of separating very similar metals, mostly with synthetic molecules,” Cotruvo said, “this is the first time that this phenomenon has been observed in nature with the lanthanides. This is basic science with applied outcomes. We’re revealing what nature is doing and it’s teaching us what we can do better as chemists.”

Cotruvo believes that the concept of binding rare earths at a molecular interface, such that dimerization is dependent on the exact size of the metal ion, can be a powerful approach for accomplishing challenging separations.

“This is the tip of the iceberg,” he said. “With further optimization of this phenomenon, the toughest problem of all — efficient separation of rare earths that are right next to each other on the periodic table — may be within reach.”

A patent application was filed by Penn State based on this work and the team is currently scaling up operations, fine-tuning and streamlining the protein with the goal of commercializing the process.

Other Penn State co-authors are Joseph Mattocks, Jonathan Jung, Chi-Yun Lin, Neela Yennawar, Emily Featherston and Timothy Hamilton. Ziye Dong, Christina Kang-Yun and Dan Park of the Lawrence Livermore National Laboratory also co-authored the paper.

The work was funded by the U.S. Department of Energy, the National Science Foundation, the National Institutes of Health, the Jane Coffin Childs Memorial Fund for Medical Research, and the Critical Materials Institute, an Energy Innovation Hub funded by the DOE, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technologies Office. Part of the work was performed under the auspices of the DOE by Lawrence Livermore National Laboratory.

END

[Attachments] See images for this press release:
A protein mines, sorts rare earths better than humans, paving way for green tech A protein mines, sorts rare earths better than humans, paving way for green tech 2 A protein mines, sorts rare earths better than humans, paving way for green tech 3

ELSE PRESS RELEASES FROM THIS DATE:

First-of-its-kind open-analysis platform for pediatric brain tumors provides robust data resource for childhood cancer research

2023-05-31
Philadelphia, May 31, 2023 – Researchers from Children’s Hospital of Philadelphia (CHOP), the Alex’s Lemonade Stand Foundation Childhood Cancer Data Lab, the Children’s Brain Tumor Network (CBTN), the Pacific Pediatric Neuro-Oncology Consortium (PNOC), and more than 20 additional institutions have partnered to create a first-of-its-kind open-source, reproducible analysis platform for pediatric brain tumors. With the help of thousands of genomically sequenced samples, researchers have used this platform to identify initial findings about genetic variants associated with poorer outcomes that could help guide future diagnostic and therapeutic advances. The ...

Scientists’ report world’s first X-ray of a single atom in Nature

Scientists’ report world’s first X-ray of a single atom in Nature
2023-05-31
A team of scientists from Ohio University, Argonne National Laboratory, the University of Illinois-Chicago, and others, led by Ohio University Professor of Physics, and Argonne National Laboratory scientist, Saw Wai Hla, have taken the world’s first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement was funded by the U.S. Department of Energy, Office of Basic Energy Sciences and could revolutionize the way scientists detect the materials. Since its discovery by Roentgen ...

Phenomenal phytoplankton: Scientists uncover cellular process behind oxygen production

Phenomenal phytoplankton: Scientists uncover cellular process behind oxygen production
2023-05-31
Take a deep breath. Now take nine more. According to new research, the amount of oxygen in one of those 10 breaths was made possible thanks to a newly identified cellular mechanism that promotes photosynthesis in marine phytoplankton. Described as “groundbreaking” by a team of researchers at UC San Diego’s Scripps Institution of Oceanography, this previously unknown process accounts for between 7% to 25% of all the oxygen produced and carbon fixed in the ocean. When also considering photosynthesis occuring on land, researchers estimated that this mechanism could be responsible for generating ...

The world's fastest electron microscope

2023-05-31
Electron microscopes give us insight into the tiniest details of materials and can visualize, for example, the structure of solids, molecules or nanoparticles with atomic resolution. However, most materials in nature are not static. They constantly interact, move and reshape between initial and final configurations. One of the most general phenomena is the interaction between light and matter, which is omnipresent in materials such as solar cells, displays or lasers. These interactions are defined by electrons pushed and pulled around by the oscillations of light, and the dynamics are extremely fast: light waves oscillate at attoseconds, the billionth of a billionth ...

Can we learn to think further ahead?

Can we learn to think further ahead?
2023-05-31
Chess grandmasters are often held up as the epitome of thinking far ahead. But can others, with a modest amount of practice, learn to think further ahead?  In addressing this question, a team of cognitive scientists has created a computational model that reveals our ability to plan for future events. The work enhances our understanding of the factors that affect decision-making and shows how we can boost our planning skills through practice. The research, conducted by scientists in New York University’s Center for Neural Science and ...

Further link identified between autoimmunity and schizophrenia

Further link identified between autoimmunity and schizophrenia
2023-05-31
Researchers from Tokyo Medical and Dental University (TMDU) identify a protein in some people with schizophrenia that causes schizophrenia-like features in mice   Tokyo, Japan – Links have been reported between schizophrenia and proteins produced by the immune system that can act against one’s own body, known as autoantibodies. In a study published last month in Brain Behavior and Immunity, Japanese researchers identified autoantibodies that target a ‘synaptic adhesion protein’, neurexin 1α, in a subset of patients with schizophrenia. When injected into mice, the ...

New study unveils nanocrystal shines on and off indefinitely

New study unveils nanocrystal shines on and off indefinitely
2023-05-31
A research team affiliated with UNIST has made a significant breakthrough in uncovering the potential of ultra-photostable avalanching nanoparticles (ANP). Their study demonstrates that such particles can perform unlimited photoswitching, leading to new advancements in fields like optical probes, 3D optical memory, and super-resolution microscopy. This breakthrough has been achieved through the efforts of Professor Yung Doug Suh and his research team in the Department of Chemistry at Ulsan National Institute of Science and Technology (UNIST), in collaboration with researchers from Columbia University and ...

A nanocrystal shines on and off indefinitely

A nanocrystal shines on and off indefinitely
2023-05-31
New York, NY—May 31, 2023—In 2021, lanthanide-doped nanoparticles made waves—or rather, an avalanche—when Changwan Lee, then a PhD student in Jim Schuck’s lab at Columbia Engineering, set off an extreme light-producing chain reaction from ultrasmall crystals developed at the Molecular Foundry at Berkeley Lab. Those same crystals are back again with a blink that can now be deliberately and indefinitely controlled.   “We’ve found the first fully photostable, fully photoswitchable nanoparticle—a holy grail of nanoprobe design,” said Schuck, associate ...

Eat right, live longer: could a moderate protein diet be the coveted elixir of youth?

Eat right, live longer: could a moderate protein diet be the coveted elixir of youth?
2023-05-31
As the proverb “You are what you eat” goes, the type of food we consume influences our health and longevity all through our lives. In fact, there is a direct association between age-related nutritional requirements and metabolic health. Optimal nutrition according to age can help maintain metabolic health, thereby improving the health span (period of life without diseases) and lifespan of an individual. Different nutritional interventions involving varied calorie and protein intake have been known to improve the health and lifespan of rodents and primates. Furthermore, recent studies have also reported the association of dietary macronutrients (proteins, ...

How Canadians' lifestyle behaviours changed during the COVID-19 pandemic

2023-05-31
Sixty per cent of roughly 1,600 Canadians who took part in a new McGill University study say their lifestyle habits either stayed the same or improved during the COVID-19 pandemic. On the flip side, 40% of participants say they adopted less healthy lifestyle habits, including worsened eating habits, sleep quality, decreased physical activity and weight gain. The research is based on the Canadian COVIDiet study of Canadians between the ages of 18 to 89 years old. Researchers from McGill’s School of Human Nutrition collected data from across the country during the first wave of infections. ...

LAST 30 PRESS RELEASES:

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

Neuroscience leader reveals oxytocin's crucial role beyond the 'love hormone' label

Twelve questions to ask your doctor for better brain health in the new year

Microelectronics Science Research Centers to lead charge on next-generation designs and prototypes

Study identifies genetic cause for yellow nail syndrome

New drug to prevent migraine may start working right away

Good news for people with MS: COVID-19 infection not tied to worsening symptoms

Department of Energy announces $179 million for Microelectronics Science Research Centers

Human-related activities continue to threaten global climate and productivity

Public shows greater acceptance of RSV vaccine as vaccine hesitancy appears to have plateaued

Unraveling the power and influence of language

Gene editing tool reduces Alzheimer’s plaque precursor in mice

TNF inhibitors prevent complications in kids with Crohn's disease, recommended as first-line therapies

Twisted Edison: Bright, elliptically polarized incandescent light

Structural cell protein also directly regulates gene transcription

Breaking boundaries: Researchers isolate quantum coherence in classical light systems

Brain map clarifies neuronal connectivity behind motor function

Researchers find compromised indoor air in homes following Marshall Fire

Months after Colorado's Marshall Fire, residents of surviving homes reported health symptoms, poor air quality

Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology

'Glass fences' hinder Japanese female faculty in international research, study finds

Vector winds forecast by numerical weather prediction models still in need of optimization

New research identifies key cellular mechanism driving Alzheimer’s disease

Trends in buprenorphine dispensing among adolescents and young adults in the US

Emergency department physicians vary widely in their likelihood of hospitalizing a patient, even within the same facility

Firearm and motor vehicle pediatric deaths— intersections of age, sex, race, and ethnicity

[Press-News.org] A protein mines, sorts rare earths better than humans, paving way for green tech