(Press-News.org) For over a century, researchers have thought that the patterns of brain activity that define our experiences, hopes and dreams are determined by how different brain regions communicate with each other through a complex web of trillions of cellular connections.
Now, a study led by from researchers at Monash University's Turner Institute for Brain and Mental Health has examined more than 10,000 different maps of human brain activity and found that the overall shape of a person’s brain exerts a far greater influence on how we think, feel and behave than its intricate neuronal connectivity.
The study, published today in the prestigious journal, Nature draws together approaches from physics, neuroscience and psychology to overturn the century-old paradigm emphasising the importance of complex brain connectivity, instead identifying a previously unappreciated relationship between brain shape and activity.
Lead author and Research Fellow Dr James Pang, from the Turner Institute and Monash University’s School of Psychological Sciences, said the findings were significant because they greatly simplified the way that we can study how the brain functions, develops and ages.
“The work opens opportunities to understand the effects of diseases like dementia and stroke by considering models of brain shape, which are far easier to deal with than models of the brain’s full array of connections,” Dr Pang said.
“We have long thought that specific thoughts or sensations elicit activity in specific parts of the brain, but this study reveals that structured patterns of activity are excited across nearly the entire brain, just like the way in which a musical note arises from vibrations occurring along the entire length of a violin string, and not just an isolated segment,” he said.
The research team used magnetic resonance imaging (MRI) to study eigenmodes, which are the natural patterns of vibration or excitation in a system, where different parts of the system are all excited at the same frequency. Eigenmodes are normally used to study physical systems in areas such as physics and engineering and have only recently been adapted to study the brain.
This work focused on developing the best way to efficiently construct the eigenmodes of the brain.
“Just as the resonant frequencies of a violin string are determined by its length, density and tension, the eigenmodes of the brain are determined by its structural––physical, geometric and anatomical––properties, but which specific properties are most important has remained a mystery,” said co-lead author, Dr Kevin Aquino, of BrainKey and The University of Sydney.
The team, led by the Turner Institute and School of Psychological Sciences ARC Laureate Fellow, Professor Alex Fornito, compared how well eigenmodes obtained from models of the shape of the brain could account for different patterns of activity when compared to eigenmodes obtained from models of brain connectivity.
“We found that eigenmodes defined by brain geometry––its contours and curvature––represented the strongest anatomical constraint on brain function, much like the shape of a drum influences the sounds that it can make,” said Professor Fornito.
“Using mathematical models, we confirmed theoretical predictions that the close link between geometry and function is driven by wave-like activity propagating throughout the brain, just as the shape of a pond influences the wave ripples that are formed by a falling pebble,” he said.
“These findings raise the possibility of predicting the function of the brain directly from its shape, opening new avenues for exploring how the brain contributes to individual differences in behaviour and risk for psychiatric and neurological diseases.”
The research team found that, across over 10,000 MRI activity maps, obtained as people performed different tasks developed by neuroscientists to probe the human brain, activity was dominated by eigenmodes with spatial patterns that have very long wavelengths, extending over distances exceeding 40 mm.
“This result counters conventional wisdom, in which activity during different tasks is often assumed to occur in focal, isolated areas of elevated activity, and tells us that traditional approaches to brain mapping may only show the tip of the iceberg when it comes to understanding how the brain works,” Dr Pang said.
END
Landmark study finds that the shape of the brain influences the way it works
Shape of brain, not interactions between different regions, crucial in how we think, feel and behave
2023-05-31
ELSE PRESS RELEASES FROM THIS DATE:
New ‘designer’ titanium alloys made using 3D printing
2023-05-31
A team of researchers has created a new class of titanium alloys that are strong and not brittle under tension, by integrating alloy and 3D-printing process designs.
The breakthrough, published in the top journal Nature, could help extend the applications of titanium alloys, improve sustainability and drive innovative alloy design.
Their discovery holds promise for a new class of more sustainable high-performance titanium alloys for applications in aerospace, biomedical, chemical engineering, space and energy technologies.
RMIT University and the University of Sydney led the innovation, in collaboration with Hong Kong Polytechnic University and the company Hexagon Manufacturing Intelligence ...
A protein mines, sorts rare earths better than humans, paving way for green tech
2023-05-31
UNIVERSITY PARK, Pa. — Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth’s crust and from one another.
Penn State scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or “dimerize,” when it is bound to certain rare earths, but prefer to remain a single unit, or “monomer,” ...
First-of-its-kind open-analysis platform for pediatric brain tumors provides robust data resource for childhood cancer research
2023-05-31
Philadelphia, May 31, 2023 – Researchers from Children’s Hospital of Philadelphia (CHOP), the Alex’s Lemonade Stand Foundation Childhood Cancer Data Lab, the Children’s Brain Tumor Network (CBTN), the Pacific Pediatric Neuro-Oncology Consortium (PNOC), and more than 20 additional institutions have partnered to create a first-of-its-kind open-source, reproducible analysis platform for pediatric brain tumors. With the help of thousands of genomically sequenced samples, researchers have used this platform to identify initial findings about genetic variants associated with poorer outcomes that could help guide future diagnostic and therapeutic advances.
The ...
Scientists’ report world’s first X-ray of a single atom in Nature
2023-05-31
A team of scientists from Ohio University, Argonne National Laboratory, the University of Illinois-Chicago, and others, led by Ohio University Professor of Physics, and Argonne National Laboratory scientist, Saw Wai Hla, have taken the world’s first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement was funded by the U.S. Department of Energy, Office of Basic Energy Sciences and could revolutionize the way scientists detect the materials.
Since its discovery by Roentgen ...
Phenomenal phytoplankton: Scientists uncover cellular process behind oxygen production
2023-05-31
Take a deep breath. Now take nine more. According to new research, the amount of oxygen in one of those 10 breaths was made possible thanks to a newly identified cellular mechanism that promotes photosynthesis in marine phytoplankton.
Described as “groundbreaking” by a team of researchers at UC San Diego’s Scripps Institution of Oceanography, this previously unknown process accounts for between 7% to 25% of all the oxygen produced and carbon fixed in the ocean. When also considering photosynthesis occuring on land, researchers estimated that this mechanism could be responsible for generating ...
The world's fastest electron microscope
2023-05-31
Electron microscopes give us insight into the tiniest details of materials and can visualize, for example, the structure of solids, molecules or nanoparticles with atomic resolution. However, most materials in nature are not static. They constantly interact, move and reshape between initial and final configurations. One of the most general phenomena is the interaction between light and matter, which is omnipresent in materials such as solar cells, displays or lasers. These interactions are defined by electrons pushed and pulled around by the oscillations of light, and the dynamics are extremely fast: light waves oscillate at attoseconds, the billionth of a billionth ...
Can we learn to think further ahead?
2023-05-31
Chess grandmasters are often held up as the epitome of thinking far ahead. But can others, with a modest amount of practice, learn to think further ahead?
In addressing this question, a team of cognitive scientists has created a computational model that reveals our ability to plan for future events. The work enhances our understanding of the factors that affect decision-making and shows how we can boost our planning skills through practice.
The research, conducted by scientists in New York University’s Center for Neural Science and ...
Further link identified between autoimmunity and schizophrenia
2023-05-31
Researchers from Tokyo Medical and Dental University (TMDU) identify a protein in some people with schizophrenia that causes schizophrenia-like features in mice
Tokyo, Japan – Links have been reported between schizophrenia and proteins produced by the immune system that can act against one’s own body, known as autoantibodies. In a study published last month in Brain Behavior and Immunity, Japanese researchers identified autoantibodies that target a ‘synaptic adhesion protein’, neurexin 1α, in a subset of patients with schizophrenia. When injected into mice, the ...
New study unveils nanocrystal shines on and off indefinitely
2023-05-31
A research team affiliated with UNIST has made a significant breakthrough in uncovering the potential of ultra-photostable avalanching nanoparticles (ANP). Their study demonstrates that such particles can perform unlimited photoswitching, leading to new advancements in fields like optical probes, 3D optical memory, and super-resolution microscopy.
This breakthrough has been achieved through the efforts of Professor Yung Doug Suh and his research team in the Department of Chemistry at Ulsan National Institute of Science and Technology (UNIST), in collaboration with researchers from Columbia University and ...
A nanocrystal shines on and off indefinitely
2023-05-31
New York, NY—May 31, 2023—In 2021, lanthanide-doped nanoparticles made waves—or rather, an avalanche—when Changwan Lee, then a PhD student in Jim Schuck’s lab at Columbia Engineering, set off an extreme light-producing chain reaction from ultrasmall crystals developed at the Molecular Foundry at Berkeley Lab. Those same crystals are back again with a blink that can now be deliberately and indefinitely controlled.
“We’ve found the first fully photostable, fully photoswitchable nanoparticle—a holy grail of nanoprobe design,” said Schuck, associate ...
LAST 30 PRESS RELEASES:
Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)
A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets
New scan method unveils lung function secrets
Searching for hidden medieval stories from the island of the Sagas
Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model
Neuroscience leader reveals oxytocin's crucial role beyond the 'love hormone' label
Twelve questions to ask your doctor for better brain health in the new year
Microelectronics Science Research Centers to lead charge on next-generation designs and prototypes
Study identifies genetic cause for yellow nail syndrome
New drug to prevent migraine may start working right away
Good news for people with MS: COVID-19 infection not tied to worsening symptoms
Department of Energy announces $179 million for Microelectronics Science Research Centers
Human-related activities continue to threaten global climate and productivity
Public shows greater acceptance of RSV vaccine as vaccine hesitancy appears to have plateaued
Unraveling the power and influence of language
Gene editing tool reduces Alzheimer’s plaque precursor in mice
TNF inhibitors prevent complications in kids with Crohn's disease, recommended as first-line therapies
Twisted Edison: Bright, elliptically polarized incandescent light
Structural cell protein also directly regulates gene transcription
Breaking boundaries: Researchers isolate quantum coherence in classical light systems
Brain map clarifies neuronal connectivity behind motor function
Researchers find compromised indoor air in homes following Marshall Fire
Months after Colorado's Marshall Fire, residents of surviving homes reported health symptoms, poor air quality
Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology
'Glass fences' hinder Japanese female faculty in international research, study finds
Vector winds forecast by numerical weather prediction models still in need of optimization
New research identifies key cellular mechanism driving Alzheimer’s disease
Trends in buprenorphine dispensing among adolescents and young adults in the US
Emergency department physicians vary widely in their likelihood of hospitalizing a patient, even within the same facility
Firearm and motor vehicle pediatric deaths— intersections of age, sex, race, and ethnicity
[Press-News.org] Landmark study finds that the shape of the brain influences the way it worksShape of brain, not interactions between different regions, crucial in how we think, feel and behave