PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

CHOP researchers use “deep sequencing” to identify several previously undescribed genetic variants in vascular anomalies

The study captured genetic variants at extremely low levels, and dozens of patients began new therapies as a result of the findings

2023-06-01
(Press-News.org) Philadelphia, June 1, 2023 – Researchers from Children’s Hospital of Philadelphia (CHOP) recently discovered that extremely thorough “deep sequencing” of the genome in tissue samples and cell-free DNA of patients with potentially life-threatening vascular anomalies captured several genetic variants related to disease that were not captured with conventional genetic sequencing methods. More than 60% of patients saw an improvement in their condition after being placed on targeted therapies related to these newly found genetic variants. The findings were published today in the journal Nature Medicine.

Vascular anomalies describe a variety of conditions that affect the veins, arteries and lymphatic system that can be classified as either vascular tumors (benign or malignant) or vascular malformations. While certain vascular anomalies naturally resolve over time, others can cause visible deformities, impede critical organ functions such as swallowing or breathing, or cause severe pain. Some vascular anomalies can even be life-threatening.

In a prior study also published in Nature Medicine, CHOP researchers were the first to discover a genetic variant that was responsible for a vascular anomaly affecting the lymphatic system, which allowed the clinical team to repurpose an existing drug to treat a patient that improved his breathing capacity and dramatically reduced swelling of his legs, side effects of his condition.

The research team suspected that other patients affected by vascular anomalies might also have mutations driving diseases that would benefit from targeted therapies. However, a lack of access to affected tissue samples or insufficient genomic sequencing information meant that the gene variants responsible for these issues may not be captured by conventional genetic testing.

“While some patients have inherited variants that you can find in a blood sample, about 90 percent of patients with vascular anomalies have acquired somatic mutations, or mutations that are not inherited, which are usually present in very low frequencies and only in certain cell or tissue types,” said senior study author Hakon Hakonarson, MD, PhD, director of the Center for Applied Genomics and co-principal investigator of the Comprehensive Vascular Anomalies Frontier Program at CHOP. “In many cases, the disease-causing variant in the mutated gene of interest is present in frequencies of less than 1 percent, which makes them hard to detect with conventional sequencing approaches.”

To better capture the underlying genetics behind these more severe vascular anomalies, researchers studied DNA from CD31+ cells or cell-free DNA isolated from lymphatic fluid or plasma from a cohort of 356 patients, including 104 with primary complex lymphatic anomalies. The isolated DNA underwent deep sequencing, which involves repeatedly sequencing certain areas of interest in the genome several times, and uncovered several somatic variants that were identified for the first time. This deep sequencing achieved a variant allele frequency of 0.15%, meaning that deep sequencing could detect variants that had a frequency as low as 0.15% in a particular specimen.

By identifying these variants, the researchers and clinical team were able to provide a molecular diagnosis, including previously undescribed genetic causes, in 41% of patients with primary complex lymphatic anomalies and 72% of patients with vascular malformations. As a result, 69 patients received or planned to receive a new medical therapy, and 63% of patients experienced marked improvement in their symptoms. 

“The ability to link a patient’s phenotype to the causative genotype of the vascular anomaly has been critical for patients,” said study author Denise Adams, MD, a pediatric hematologist-oncologist and Director of the Comprehensive Vascular Anomalies Program at CHOP. “This has enabled treatment with directed medical therapy that has significantly improved the quality of life of our patients. We are fortunate to work with a wonderful interdisciplinary team that has helped to move this forward for our patients.”

“Importantly, our study comprehensively demonstrated the bedside to bench and back approach – from the molecular studies that found the low allele frequency variants to the functional studies in organoids and zebrafish that ultimately benefited the patients by directing medical therapy,” said study co-leader Sarah Sheppard, MD, PhD, a tenure track investigator at the Eunice Kennedy Shriver National Institute of Child Health and Human Development and clinical geneticist for the Comprehensive Vascular Anomalies Program at CHOP.

“Our findings pave the way for future applications of cfDNA technology to be an innovative, non-invasive molecular diagnostic for all patients with vascular anomalies,” said study co-leader Dong Li, PhD, an assistant professor within the Center for Applied Genomics at CHOP. “We believe the time is right to transform the understanding of these complex diseases and identify and test new therapies for these life-threatening and life-altering conditions.”

CHOP’s Comprehensive Vascular Anomalies Program (CVAP) is a CHOP Frontier Program that uses state-of-the-art genomics and personalized research strategies to determine the cause of complex vascular conditions and identify targeted therapies. The CVAP is comprised of specialists across disciplines that seeks breakthrough treatments and cures for pediatric patients with rare, life threatening tumors and malformations of the vasculature and draws on the extensive clinical and genomic research capacity within the CHOP Cancer Center and Center for Applied Genomics. Depending on the severity of their condition, CVAP patients see specialists from across all disciplines including Genetics, Oncology/Hematology, Surgery, Interventional Radiology, Dermatology and more. Comprehensive care is also provided including OT/PT, social work, psychology and nursing.

This study was supported by a Children’s Hospital of Philadelphia Frontier Program Grant, K-Readiness Grant and Endowed Chair in Genomic Research; the National Center for Advancing Translational Sciences of the National Institutes of Health under grant 5R21TR00333; a research grant from the Lymphatic Malformation Institute; and the Eunice Kennedy Shriver National Institute of Child Health and Human Development under grant ZIA-HD009003-01.

Li, Sheppard et al, “Genomic profiling informs diagnoses and treatment in vascular anomalies.” Nature Medicine. Online June 1, 2023. DOI: 10.1038/s41591-023-02364-x.

 

About Children’s Hospital of Philadelphia: A non-profit, charitable organization, Children’s Hospital of Philadelphia was founded in 1855 as the nation’s first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, the 595-bed hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. The institution has a well-established history of providing advanced pediatric care close to home through its CHOP Care Network, which includes more than 50 primary care practices, specialty care and surgical centers, urgent care centers, and community hospital alliances throughout Pennsylvania and New Jersey, as well as an inpatient hospital with a dedicated pediatric emergency department in King of Prussia. In addition, its unique family-centered care and public service programs have brought Children’s Hospital of Philadelphia recognition as a leading advocate for children and adolescents. For more information, visit https://www.chop.edu. 

END


ELSE PRESS RELEASES FROM THIS DATE:

Quantifying mangroves’ value as a climate solution and economic engine

Quantifying mangroves’ value as a climate solution and economic engine
2023-06-01
A tiny Central American country is charting a path to slowing climate change, while boosting the economy and making communities safer. A new Stanford-led study quantifies the value of Belize’s coastal mangrove forests in terms of how much carbon they can hold, the value they can add to tourism and fisheries, and the protection they can provide against coastal storms and other risks. Importantly, the findings, published June 1 in Nature Ecology and Evolution, have already provided a basis for Belize’s commitment to protect or restore additional mangrove forests totaling an area about the size ...

Smart thermometer–based participatory surveillance to discern the role of children in household viral transmission during pandemic

2023-06-01
About The Study: In this study using smart thermometers to measure within-household transmission at a national scale, researchers discerned an important role for children in the spread of viral infection within households during the COVID-19 pandemic, heightened when schools were in session, supporting a role for school attendance in COVID-19 spread.  Authors: Kenneth D. Mandl, M.D., M.P.H., of Boston Children’s Hospital, is the corresponding author.  To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/  (doi:10.1001/jamanetworkopen.2023.16190) Editor’s ...

Global, race-neutral reference equations and pulmonary function test interpretation

2023-06-01
About The Study: The use of race-neutral reference equations to interpret pulmonary function tests resulted in a significant increase in the number of Black individuals with respiratory impairments along with a significant increase in the severity of the identified impairments. More work is needed to quantify the effect these reference equations would have on diagnosis, referral, and treatment patterns.  Authors: Alexander T. Moffett, M.D., of the University of Pennsylvania in Philadelphia, is the corresponding author.  To access the embargoed study: Visit our For The Media website ...

Efficacy, safety of atropine for the treatment of pediatric nearsightedness progression over 3 years

2023-06-01
About The Study: The efficacy and safety observed in this randomized clinical trial suggest that low-dose atropine may provide a treatment option for childhood myopia progression. Authors: Karla Zadnik, O.D., Ph.D., of the Ohio State University College of Optometry in Columbus, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/  (doi:10.1001/jamaophthalmol.2023.2097) Editor’s Note: Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial ...

Personalizing prostate cancer screening may improve the accuracy of detection

2023-06-01
The accuracy of prostate-specific antigen (PSA) screening for prostate cancer can be improved by accounting for genetic factors that cause changes in PSA levels that are not associated with cancer, according to a multi-center study led by UC San Francisco and Stanford University. In a study publishing June 1, 2023 in Nature Medicine, UCSF researchers and their collaborators conducted a large genome-wide association study of PSA in more than 95,000 men without diagnosed prostate cancer, which identified over 80 novel PSA-associated variants. They set ...

NIH’s ComboMATCH initiative will test new drug combinations guided by tumor biology

2023-06-01
The National Cancer Institute (NCI) has launched a large precision medicine cancer initiative to test the effectiveness of treating adults and children with new drug combinations that target specific tumor alterations. Known as the Combination Therapy Platform Trial with Molecular Analysis for Therapy Choice (ComboMATCH), the initiative is the largest of its kind to test combinations of cancer drugs guided by tumor biology. The endeavor aims to identify promising treatments that can advance to larger, more definitive clinical ...

High-resolution images reveal workings of a bacterial RNA riboswitch, a promising new target for antibiotics

2023-06-01
Image To prevent a global health crisis, scientists around the world are searching for ways to fight bacteria that can evade the current arsenal of antibiotics.   A promising target for new and improved antibiotics are riboswitches, small stretches of RNA that regulate a process necessary for the production of proteins by the bacterial cell. Riboswitches are found almost exclusively in bacteria and could be targeted with antibiotics so that animals or humans are unaffected. With a full understanding of how riboswitches work, researchers may be able to develop drugs that disrupt the cellular machinery ...

University College Dublin researcher receives ERC funding to unlock insights into pig-to-human heart transplants

2023-06-01
Thursday 1st June: Dr Philip Cardiff, Associate Professor at University College Dublin's School of Mechanical and Materials Engineering, has received a European Research Council (ERC) Consolidator grant of €2 million for his 5-year project XenoSim. With the support of this award, Dr Cardiff will develop advanced computational techniques that can provide unprecedented insights into the cutting-edge realm of pig-to-human heart transplants ERC Consolidator Grants are awarded to help excellent scientists, ...

SISAQOL-IMI: Setting standards for the use of patient-reported outcome data in cancer trials

2023-06-01
Brussels, 1 June 2023 – Today, the European Organisation for Research and Treatment of Cancer (EORTC) is excited to share the publication of the first consensus paper by the SISAQOL-IMI Consortium1. The paper provides an overview of the stakeholders’ views on the need for SISAQOL-IMI and the agreed priority set of patient-reported outcome (PRO) objectives that the Consortium will produce international consensus-based recommendations on. The Setting International Standards in Analysing ...

First soil map of terrestrial and blue carbon highlights need for conservation

2023-06-01
New Curtin University research has identified the most carbon-rich soils in Australia are in areas that are most threatened by human activities and climate change, including Eucalypt and mangrove forests, and woodland and grassland areas that cover large parts of the country’s interior. Lead researcher Dr Lewis Walden from Curtin’s Soil & Landscape Science in the School of Molecular and Life Sciences said the findings highlighted the need to protect key terrestrial and coastal marine ecosystems, which play an important contributing role in national strategies to mitigate climate change. “Using multiscale machine ...

LAST 30 PRESS RELEASES:

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

Older age linked to increased complications after breast reconstruction

ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting

Early detection model for pancreatic necrosis improves patient outcomes

Poor vascular health accelerates brain ageing

[Press-News.org] CHOP researchers use “deep sequencing” to identify several previously undescribed genetic variants in vascular anomalies
The study captured genetic variants at extremely low levels, and dozens of patients began new therapies as a result of the findings