(Press-News.org) Two studies highlight new glass- and ceramic-based passive radiative cooling materials. Unlike passive radiative cooling approaches that rely on polymers, these hard materials are more durable and versatile, making them more attractive for a wide range of outdoor passive cooling applications, including those that could help reduce the need for air conditioning. The energy demand for cooling continues to rise, particularly in regions rapidly warming due to climate change. To make matters worse, the growing carbon footprint of cooling systems further contributes to global warming, exacerbating the need for cooling solutions. Passive radiative cooling (PRC) materials, which are designed to reflect solar radiation and emit long-wavelength infrared (LWIR) thermal radiation through the atmosphere’s infrared window and back into outer space, are promising technologies that could mitigate both rising temperatures and cooling costs. However, developing effective PRC materials that are both environmentally robust and practical to manufacture has proven challenging. In this pair of studies, Xinpeng Zhao and colleagues and Kaixin Lin and colleagues, respectively describe microporous materials – a glass-based ceramic coating and a ceramic composite, respectively – that exhibit passive daytime radiative cooling and resistance to harsh environments.
The cooling glass-based ceramic coating developed by Zhao et al. uses a microporous glass silicon dioxide framework embedded with aluminum oxide (Al2O3) nanoparticles. The dual-particle approach produces a material that has both high solar reflectance and selective LWIR emission. What’s more, the addition of Al2O3 prevents densification of the microporous structure, which is crucial to its functionality, during manufacturing. According to the authors, the microporous glass coating enables a temperature drop of ~3.5 to 4 degrees Celsius, even under high-humidity conditions in both the daytime and nighttime respectively. It also maintains its high solar reflectance when exposed to harsh environments.
Inspired by the carapace of the whitest known insect on earth, Lin et al. developed a cooling ceramic composite composed of a hierarchically structured microporous Al2O3 framework that can achieve highly efficient light scattering, high thermal emission, and a near-perfect solar reflection of 99.6%. According to Lin et al., the ceramic demonstrated continuous sub-ambient cooling with a power of over 130 watts per square meter outdoors and at noon. “Although some structures with dynamic radiative cooling capabilities have been proposed and experimentally demonstrated recently, attaining large-scale applications remains a substantial challenge,” write Donliang Zhao and Huajie Tang in a related Perspective. “Nevertheless, the findings of Zhao et al. and Lin et al. advance cooling approaches that could, if commercially applied to buildings, drive down the electrical demand of air conditioners and benefit the environment.”
END
Introducing: Ceramic- and glass-based passive radiative cooling materials resistance to harsh environments
2023-11-09
ELSE PRESS RELEASES FROM THIS DATE:
Researchers identify previously unknown step in cholesterol absorption in the gut
2023-11-09
UCLA researchers have described a previously unknown step in the complex process by which dietary cholesterol is processed in the intestines before being released into the bloodstream – potentially revealing a new pathway to target in cholesterol treatment.
Although an existing drug and statins impact part of the process, an experimental drug being studied in UCLA research labs appears to specifically target the newfound pathway, possibly adding a new approach to the cholesterol management toolbox.
“Our results show that certain proteins in the Aster family play a critical role in moving cholesterol through the absorption and uptake process,” said ...
Desert birds lay larger eggs when they have more helpers
2023-11-09
Desert birds lay larger eggs when they have more helpers to feed their chicks, new research shows.
White-browed sparrow weavers live in family groups in which only a dominant pair breeds and their grown-up offspring, particularly females, help to feed nestlings.
The study, by researchers at the University of Exeter, found that mothers increased the size of their eggs when they had more female helpers on hand.
The number of male helpers did not affect egg size, probably because male helpers feed chicks at substantially lower rates than female helpers.
“We don’t yet fully understand why helped mothers are laying heavier ...
Ethical, environmental and political concerns about climate change affect reproductive choices
2023-11-09
People are beginning to reconsider their reproductive decisions due to complex concerns about climate change, with many choosing to forego childbearing, or reduce the number of children they have as a result, finds a new study by UCL researchers.
The research, published in PLOS Climate, is the first systematic review to explore how and why climate change-related concerns may be impacting reproductive decision-making.
The team examined 13 studies, involving 10,788 participants, which were conducted between 2012 and 2022, primarily in Global North countries ...
Photonics team develops high-performance ultrafast lasers that fit on a fingertip
2023-11-09
Lasers are essential tools for observing, detecting, and measuring things in the natural world that we can’t see with the naked eye. But the ability to perform these tasks is often restricted by the need to use expensive and large instruments.
In a newly published cover-story paper in the journal Science, researcher Qiushi Guo demonstrates a novel approach for creating high-performance ultrafast lasers on nanophotonic chips. His work centers on miniaturizing mode-lock lasers — a unique laser that emits a train of ultrashort, coherent light pulses in femtosecond intervals, which is an astonishing quadrillionth ...
Scientists flag conflicts of interest ahead of UN plastic and chemical talks
2023-11-09
An international group of 35 scientists is calling out conflicts of interest plaguing global plastic treaty negotiations and that have interfered with timely action on other health and environmental issues. They urge the implementation of strict guidelines to prevent the same problems from affecting the UN’s upcoming Science Policy Panel on chemicals. Their concerns and recommendations are outlined in a featured paper in the journal Environmental Science & Technology.
“From Big Tobacco to Big Oil, powerful industries use the same playbook to manufacture doubt and sow misinformation,” said co-author Bethanie ...
First-ever crowd-sourced small molecule discovery and a potent SARS-CoV-2 antiviral lead compound announced by COVID Moonshot Consortium
2023-11-09
The work of the COVID Moonshot Consortium is being published in the prestigious journal Science on 10 November, revealing their discovery of a potent SARS-CoV-2 antiviral lead compound. It also reflects on the success of its open science approach in launching a patent-free antiviral discovery program to rapidly develop a differentiated lead in response to a pandemic emergency. Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors ) DOI 10.1126/science.abo7201.
The COVID Moonshot initiative ...
Cornell chemists image basic blocks of synthetic polymers
2023-11-09
ITHACA, N.Y. -- Synthetic polymers are everywhere in our society – from nylon and polyester clothing to Teflon cookware and epoxy glue. At the molecular level, these polymers’ molecules are made of long chains of monomer building blocks, the complexity of which increases functionality in many such materials.
In particular, copolymers, which consist of different types of monomers in the same chain, allow for fine-tuning of the material’s properties, said Peng Chen, the Peter J.W. Debye Professor of Chemistry in the College of Arts and Sciences (A&S). The monomer sequence plays a critical role in a material’s properties, but scientists until ...
Brain imaging identifies biomarkers of mental illness
2023-11-09
Philadelphia, November 9, 2023 – Research and treatment of psychiatric disorders are stymied by a lack of biomarkers – objective biological or physiological markers that can help diagnose, track, predict, and treat diseases. In a new study, researchers use a very large dataset to identify predictive brain imaging-based biomarkers of mental illness in adolescents. The work appears in Biological Psychiatry, published by Elsevier.
Traditionally, psychiatric disorders such as depression have been diagnosed based on symptoms according to subjective assessments. The identification of biomarkers to aid in diagnosis and treatment selection would greatly advance treatments.
In ...
Cary Institute partners on $3M USDA-funded study on COVID-19 variants that could emerge from wildlife
2023-11-09
Many wild animals can carry COVID-19, including those that live among us, such as deer mice, red foxes, white-tailed deer, and more. These species may act as reservoirs, offering new opportunities for the virus to mutate and spill back into people. The omicron variant, for example, is thought to have emerged from mice.
With $3 million in federal grant funding, a new five-year research project will bring together virology, disease ecology, and artificial intelligence to better understand how SARS-CoV-2 (the virus that causes COVID-19) behaves ...
The enigma of embryonic development: How certain animals trim their genomes
2023-11-09
New research is underway to decipher a fascinating biological puzzle—how some animals can naturally discard more than half of their genetic information during embryonic development.
This radical natural phenomenon has captivated scientists for over 130 years, presenting a tantalizing question in the field of developmental biology and genetics.
Equipped with the latest in genetic engineering tools, the team at The University of Warwick is working to dissect the mechanisms behind this selective genomic editing. By uncovering the processes that allow some nematode worms to abandon up to ...