PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Atomic dance gives rise to a magnet

Rice study leverages chiral phonons for transformative quantum effect

Atomic dance gives rise to a magnet
2023-11-09
(Press-News.org) Quantum materials hold the key to a future of lightning-speed, energy-efficient information systems. The problem with tapping their transformative potential is that, in solids, the vast number of atoms often drowns out the exotic quantum properties electrons carry.

Rice University researchers in the lab of quantum materials scientist Hanyu Zhu found that when they move in circles, atoms can also work wonders: When the atomic lattice in a rare-earth crystal becomes animated with a corkscrew-shaped vibration known as a chiral phonon, the crystal is transformed into a magnet.

According to a study published in Science, exposing cerium fluoride to ultrafast pulses of light sends its atoms into a dance that momentarily enlists the spins of electrons, causing them to align with the atomic rotation. This alignment would otherwise require a powerful magnetic field to activate, since cerium fluoride is naturally paramagnetic with randomly oriented spins even at zero temperature.

“Each electron possesses a magnetic spin that acts like a tiny compass needle embedded in the material, reacting to the local magnetic field,” said Rice materials scientist and co-author Boris Yakobson. “Chirality ⎯ also called handedness because of the way in which left and right hands mirror each other without being superimposable ⎯ should not affect the energies of the electrons’ spin. But in this instance, the chiral movement of the atomic lattice polarizes the spins inside the material as if a large magnetic field were applied.”

Though short-lived, the force that aligns the spins outlasts the duration of the light pulse by a significant margin. Since atoms only rotate in particular frequencies and move for a longer time at lower temperatures, additional frequency- and temperature-dependent measurements further confirm that magnetization occurs as a result of the atoms’ collective chiral dance.

“The effect of atomic motion on electrons is surprising because electrons are so much lighter and faster than atoms,” said Zhu, Rice’s William Marsh Rice Chair and an assistant professor of materials science and nanoengineering. “Electrons can usually adapt to a new atomic position immediately, forgetting their prior trajectory. Material properties would remain unchanged if atoms went clockwise or counterclockwise, i.e., traveled forward or backward in time ⎯ a phenomenon that physicists refer to as time-reversal symmetry.”

The idea that the collective motion of atoms breaks time-reversal symmetry is relatively recent. Chiral phonons have now been experimentally demonstrated in a few different materials, but exactly how they impact material properties is not well understood.

“We wanted to quantitatively measure the effect of chiral phonons on a material’s electrical, optical and magnetic properties,” Zhu said. “Because spin refers to electrons’ rotation while phonons describe atomic rotation, there is a naive expectation that the two might talk with each other. So we decided to focus on a fascinating phenomenon called spin-phonon coupling.”

Spin-phonon coupling plays an important part in real-world applications like writing data on a hard disk. Earlier this year, Zhu’s group demonstrated a new instance of spin-phonon coupling in single molecular layers with atoms moving linearly and shaking spins.

In their new experiments, Zhu and the team members had to find a way to drive a lattice of atoms to move in a chiral fashion. This required both that they pick the right material and that they create light at the right frequency to send its atomic lattice aswirl with the help of theoretical computation from the collaborators.

“There is no off-the-shelf light source for our phonon frequencies at about 10 terahertz,” explained Jiaming Luo, an applied physics graduate student and the lead author of the study. “We created our light pulses by mixing intense infrared lights and twisting the electric field to ‘talk’ to the chiral phonons. Furthermore, we took another two infrared light pulses to monitor the spin and atomic motion, respectively.”

In addition to the insights into spin-phonon coupling derived from the research findings, the experimental design and setup will help inform future research on magnetic and quantum materials.

“We hope that quantitatively measuring the magnetic field from chiral phonons can help us develop experiment protocols to study novel physics in dynamic materials,” Zhu said. “Our goal is to engineer materials that do not exist in nature through external fields ⎯ such as light or quantum fluctuations.”

The research was supported by the National Science Foundation (2005096, 1842494, 2240106), the Welch Foundation (C-2128) and the Army Research Office (W911NF-16-1-0255).

-30-

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Peer-reviewed paper:

“Large effective magnetic fields from chiral phonons in rare-earth halides” | Science | DOI: 10.1126/science.adi9601

Authors: Jiaming Luo, Tong Lin, Junjie Zhang, Xiaotong Chen, Elizabeth Blackert, Rui Xu, Boris Yakobson and Hanyu Zhu

http://www.science.org/doi/10.1126/science.adi9601

Animation:

https://youtu.be/5pvuq_5SEX4
CAPTION: Chiral phonons excited by the circularly polarized terahertz light pulses generate ultrafast magnetization in cerium fluoride. Fluorine ions (red, fuchsia) are set into motion by circularly polarized terahertz light pulses (yellow spiral), where red denotes the ions with the largest motion in the chiral phonon mode. The cerium ion is represented in teal. The compass needle represents the magnetization induced by the rotating atoms. (Animation courtesy of Mario Norton and Jiaming Luo/Rice University)

Image Downloads:

https://news-network.rice.edu/news/files/2023/11/illustration.jpg
CAPTION: Chiral phonons excited by the circularly polarized terahertz light pulses generate ultrafast magnetization in cerium fluoride. Fluorine ions (red, fuchsia) are set into motion by circularly polarized terahertz light pulses (yellow spiral), where red denotes the ions with the largest motion in the chiral phonon mode. The cerium ion is represented in teal. The compass needle represents the magnetization induced by the rotating atoms. (Image courtesy of Mario Norton and Jiaming Luo/Rice University)

https://news-network.rice.edu/news/files/2023/11/230919_zhu_Fitlow_7594.jpg
CAPTION: Hanyu Zhu is the William Marsh Rice Chair and assistant professor of materials science and nanoengineering at Rice University. (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2023/11/230919_zhu_Fitlow_7564.jpg
CAPTION: Jiaming Luo is a Rice graduate student in applied physics and a lead author on the study. (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2023/11/230919_zhu_Fitlow_7554.jpg
CAPTION: Tong Lin (from left), Hanyu Zhu and Jiaming Luo at EQUAL lab. (Photo by Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2023/11/230302_yakobson_Fitlow_412-14.jpg
CAPTION: Boris Yakobson is Rice’s Karl F. Hasselmann Professor of Engineering and a professor of materials science and nanoengineering and of chemistry. (Photo by Jeff Fitlow/Rice University)

Related stories:

Discovery may lead to terahertz technology for quantum sensing:
https://news.rice.edu/news/2023/discovery-may-lead-terahertz-technology-quantum-sensing

Bending 2D nanomaterial could ‘switch on’ future technologies:
https://news.rice.edu/news/2023/bending-2d-nanomaterial-could-switch-future-technologies#:~:text=%E2%80%9CSo%20instead%20of%20remaining%20flat,means%20you%20have%20an%20actuator.

Rice’s Hanyu Zhu wins NSF CAREER Award:
https://msne.rice.edu/news/hanyu-zhu-receives-nsf-career-award

Links:

Zhu lab: https://zhugroup.rice.edu/
Yakobson Research Group: https://biygroup.blogs.rice.edu/
Department of Materials Science and NanoEngineering: msne.rice.edu
George R. Brown School of Engineering: https://engineering.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 4,574 undergraduates and 3,982 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction, No.2 for best-run colleges and Np.12 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

END

[Attachments] See images for this press release:
Atomic dance gives rise to a magnet Atomic dance gives rise to a magnet 2 Atomic dance gives rise to a magnet 3

ELSE PRESS RELEASES FROM THIS DATE:

Milky Way-like galaxy found in the early universe

Milky Way-like galaxy found in the early universe
2023-11-09
Using the James Webb Space Telescope, an international team, including astronomer Alexander de la Vega of the University of California, Riverside, has discovered the most distant barred spiral galaxy similar to the Milky Way that has been observed to date. Until now it was believed that barred spiral galaxies like the Milky Way could not be observed before the universe, estimated to be 13.8 billion years old, reached half of its current age. The research, published in Nature this week, was led by scientists at the Centro de Astrobiología in Spain. “This galaxy, named ceers-2112, formed soon after ...

Side-effect avoiding treatment shows early promise against breast cancer in mice

Side-effect avoiding treatment shows early promise against breast cancer in mice
2023-11-09
New experimental evidence suggests that substances known as narrow-spectrum Wnt signaling inhibitors—which could have fewer side effects than other related substances—are capable of suppressing the growth of breast cancer tumors in mice. Aina He of Shanghai Jiaotong University Affiliated Sixth People’s Hospital, China, and colleagues present these findings November 9th in the open access journal PLOS Biology. While certain subtypes of breast cancer can be targeted with special medications, others can only be treated with standard chemotherapy. For some patients, chemotherapy may lead to the growth of stem cell-like cancer cells that are drug resistant. Previous ...

Bacteria-virus arms race provides rare window into rapid and complex evolution

Bacteria-virus arms race provides rare window into rapid and complex evolution
2023-11-09
As conceived by Charles Darwin in the 1800s, evolution is a slow, gradual process during which species adaptations are inherited incrementally over generations. However, today biologists can see how evolutionary changes unfold on much more accelerated timescales. Rather than the evocative plants and animals of the Galapagos Islands that Darwin studied in forming his theory of evolution, Postdoctoral Scholar Joshua Borin and Associate Professor Justin Meyer of UC San Diego’s School of Biological Sciences are documenting rapid evolutionary processes in simple laboratory flasks. Borin ...

Open-science “COVID Moonshot” discovers new antivirals to treat COVID-19

2023-11-09
Although the group’s work has been freely available since its inception in March 2020, the COVID Moonshot Consortium is finally formally reporting their results. The COVID Moonshot – an open-science, crowdsourced, and patent-free drug discovery campaign targeting the SARS-CoV-2 virus – has yielded a wealth of data on the virus’s main protease, including insights that could pave the way for the development of new and better therapeutics. “The lead therapeutics described by [these researchers] may not be ready in time to affect the current pandemic, considering the timelines and challenges of drug approval,” write Brian Shoichet and Charles ...

Shrinking a mode-locked laser to the size of an optical chip

2023-11-09
Setting out to improve a technology that usually requires bulky, bench-top equipment, Quishi Guo and colleagues have shrunk a mode-locked laser (MLL) to the size of an optical chip with an integrated nanophotonic platform. The results show promise for developing ultrafast nanophotonic systems for a wide range of applications. Mode-locked lasers (MLLs) can produce coherent ultrashort pulses of light at extremely fast speeds – on the order of picoseconds and femtoseconds. These devices have enabled numerous technologies in photonics, including extreme nonlinear optics, two-photon microscopy, ...

Wildfire risk to US homes is rising, especially in western grasslands and shrublands

2023-11-09
Drawing on 30 years of data, researchers show that the number of homes within wildfire perimeters in the U.S. has doubled since the 1990s. This increasing risk is driven by both an increase in wildfires and the expansion of new homes into wildfire-prone areas, especially in the wildland-urban interface. Wildfire risks to homes are increasing, particularly in the wildland-urban interface (WUI), where houses and wildland vegetation are in close proximity. Over the last 12 years, more than 55,000 homes in the U.S. have been lost to wildfires due to rapid increases ...

Introducing: Ceramic- and glass-based passive radiative cooling materials resistance to harsh environments

2023-11-09
Two studies highlight new glass- and ceramic-based passive radiative cooling materials. Unlike passive radiative cooling approaches that rely on polymers, these hard materials are more durable and versatile, making them more attractive for a wide range of outdoor passive cooling applications, including those that could help reduce the need for air conditioning. The energy demand for cooling continues to rise, particularly in regions rapidly warming due to climate change. To make matters worse, the growing carbon footprint of cooling systems further contributes to global warming, exacerbating the need for cooling solutions. Passive radiative cooling (PRC) materials, which ...

Researchers identify previously unknown step in cholesterol absorption in the gut

2023-11-09
UCLA researchers have described a previously unknown step in the complex process by which dietary cholesterol is processed in the intestines before being released into the bloodstream – potentially revealing a new pathway to target in cholesterol treatment. Although an existing drug and statins impact part of the process, an experimental drug being studied in UCLA research labs appears to specifically target the newfound pathway, possibly adding a new approach to the cholesterol management toolbox. “Our results show that certain proteins in the Aster family play a critical role in moving cholesterol through the absorption and uptake process,” said ...

Desert birds lay larger eggs when they have more helpers

Desert birds lay larger eggs when they have more helpers
2023-11-09
Desert birds lay larger eggs when they have more helpers to feed their chicks, new research shows. White-browed sparrow weavers live in family groups in which only a dominant pair breeds and their grown-up offspring, particularly females, help to feed nestlings. The study, by researchers at the University of Exeter, found that mothers increased the size of their eggs when they had more female helpers on hand. The number of male helpers did not affect egg size, probably because male helpers feed chicks at substantially lower rates than female helpers. “We don’t yet fully understand why helped mothers are laying heavier ...

Ethical, environmental and political concerns about climate change affect reproductive choices

2023-11-09
People are beginning to reconsider their reproductive decisions due to complex concerns about climate change, with many choosing to forego childbearing, or reduce the number of children they have as a result, finds a new study by UCL researchers. The research, published in PLOS Climate, is the first systematic review to explore how and why climate change-related concerns may be impacting reproductive decision-making. The team examined 13 studies, involving 10,788 participants, which were conducted between 2012 and 2022, primarily in Global North countries ...

LAST 30 PRESS RELEASES:

Study shows psychedelic drug psilocybin gives comparable long-term antidepressant effects to standard antidepressants, but may offer additional benefits

Study finds symptoms of depression during pregnancy linked to specific brain activity: scientists hope to develop test for “baby blues” risk

Sexual health symptoms may correlate with poor adherence to adjuvant endocrine therapy in Black women with breast cancer

Black patients with triple-negative breast cancer may be less likely to receive immunotherapy than white patients

Affordable care act may increase access to colon cancer care for underserved groups

UK study shows there is less stigma against LGBTQ people than you might think, but people with mental health problems continue to experience higher levels of stigma

Bringing lost proteins back home

Better than blood tests? Nanoparticle potential found for assessing kidneys

Texas A&M and partner USAging awarded 2024 Immunization Neighborhood Champion Award

UTEP establishes collaboration with DoD, NSA to help enhance U.S. semiconductor workforce

Study finds family members are most common perpetrators of infant and child homicides in the U.S.

Researchers secure funds to create a digital mental health tool for Spanish-speaking Latino families

UAB startup Endomimetics receives $2.8 million Small Business Innovation Research grant

Scientists turn to human skeletons to explore origins of horseback riding

UCF receives prestigious Keck Foundation Award to advance spintronics technology

Cleveland Clinic study shows bariatric surgery outperforms GLP-1 diabetes drugs for kidney protection

Study reveals large ocean heat storage efficiency during the last deglaciation

Fever drives enhanced activity, mitochondrial damage in immune cells

A two-dose schedule could make HIV vaccines more effective

Wastewater monitoring can detect foodborne illness, researchers find

Kowalski, Salonvaara receive ASHRAE Distinguished Service Awards

SkAI launched to further explore universe

SLU researchers identify sex-based differences in immune responses against tumors

Evolved in the lab, found in nature: uncovering hidden pH sensing abilities

Unlocking the potential of patient-derived organoids for personalized sarcoma treatment

New drug molecule could lead to new treatments for Parkinson’s disease in younger patients

Deforestation in the Amazon is driven more by domestic demand than by the export market

Demand-side actions could help construction sector deliver on net-zero targets

Research team discovers molecular mechanism for a bacterial infection

What role does a tailwind play in cycling’s ‘Everesting’?

[Press-News.org] Atomic dance gives rise to a magnet
Rice study leverages chiral phonons for transformative quantum effect