(Press-News.org)
Ions are everywhere, from our daily surroundings to the cosmic expanse. As common table salt (NaCl) dissolves into sodium (Na+) and chloride (Cl-) ions in water, it imparts a salty taste. Once absorbed by the body, these ions regulate nerve impulses and muscle movements. In the sun, plasma—a gathering of ions in the gaseous state—undergoes nuclear fusion reactions, transmitting light and energy to Earth. One of the most noteworthy usage ions in everyday life is found in lithium-ion batteries, which power devices like smartphones, laptops, and electric cars.
Consequently, ions play pivotal roles in various facets of our lives, and comprehending the intricate processes, structural attributes, and dynamics of ions remains crucial for advancements in science and technology. However, capturing the ephemeral moments of ion formation and the molecular structural transitions, especially in the challenging gas phase, has proven to be challenging due to experimental complexities.
Led by Director IHEE Hyotcherl, researchers at the Center for Advanced Reaction Dynamics (CARD) in the Institute for Basic Science (IBS) achieved real-time capture of the ionization process and subsequent structural changes in gas-phase molecules through an enhanced megaelectronvolt ultrafast electron diffraction (MeV-UED) technique, enabling observation of faster and finer movements of ions.
Director Ihee’s team had a long history of achieving groundbreaking milestones in molecular dynamics, such as the rupture of molecular bonds (Science, 2005), the initiation of molecular birth through chemical bonding (Nature, 2015), and the in-depth exploration of molecular structures at the atomic level across the entirety of a chemical reaction (Nature, 2020). Now for the first time, they successfully conducted real-time observations of the formation and structural evolution of gas-phase ions.
To achieve this objective, the team focused on cations of 1,3-dibromopropane (DBP). Experimental data unveiled a fascinating phenomenon—the cation persisted in a structurally stable state termed the 'dark state' for approximately 3.6 picoseconds (1 picosecond equals one trillionth of a second) following its formation. Subsequently, the cation underwent a transformation into an unusual intermediate with a ring structure encompassing four atoms, including a loosely bound bromine atom. Eventually, the loosely attached bromine atom disengaged, giving rise to a bromonium ion characterized by a ring structure comprising three atoms.
Given the high reactivity of ions, observing their existence has posed a longstanding significant challenge. The success of this research hinged on the incorporation of a newly devised signal processing technology and a modeling analysis technique for structural changes. Another important element was the application of the resonance-enhanced multiphoton ionization (REMPI) technique, which facilitated the mass production of specific ions while preventing random dissociation of compounds. The experimental findings indicated that the generated gas ions maintained a specific form before undergoing sudden transformations, which allowed the IBS team to ultimately elucidate the formation of chemically stable, ring-shaped molecules.
Then, by leveraging the innovative megaelectronvolt ultrafast electron diffraction (MeV-UED) technique, the research team achieved a precise capture of subtle structural changes in ions within the gas phase. This cutting-edge technology offered high-resolution spatial and temporal resolution required for the needs of this research, and it enabled the meticulous tracking of the entire process from the moment of ion generation to subsequent structural transformations.
Being the first to achieve real-time observation of structural changes in selectively generated ions, this study is hailed as a substantial breakthrough in ion chemistry research. This research represents a groundbreaking achievement in the scientific community, marking the inaugural instance of real-time observation of the structural dynamics of molecular ions.
By advancing our understanding of ions in the gas phase, this research yields fresh perspectives across diverse fields, including the mechanisms of chemical reactions, alterations in material properties, and the realm of astrochemistry. The anticipated impact extends well beyond ion chemistry, influencing various scientific and technological disciplines.
Dr. HEO Jun, the primary author, emphasized, "This discovery represents a pivotal advancement in our fundamental comprehension of ion chemistry, poised to profoundly influence the design of diverse chemical reactions and future exploration in astrochemistry."
KIM Doyeong, the first author and a student, shared his aspirations, stating, "Contributing to a study with the potential to lay the groundwork for advancements in basic science is truly gratifying. I am committed to persistent research efforts to evolve into a proficient scientist."
Professor IHEE Hyotcherl reflected, "Despite the remarkable strides in science and technology, numerous captivating mysteries remain in the material world. This research, though unveiling just one more enigma of ions previously undiscovered, underscores the profound secrets awaiting our exploration." He further remarked, "The support from the Institute for Basic Science has played a crucial role in achieving this modest yet meaningful milestone. We anticipate sustained, effective backing for R&D budgets in the future."
END
CHAPEL HILL, N.C. – Every time a cancer cell divides, it sustains damage to its own DNA molecules. Researchers, including Gaorav Gupta, MD, PhD, associate professor in the Department of Radiation Oncology at the UNC School of Medicine, have long wondered how cancers are able to evade detection by the body’s own defenses, despite the immune system being on constant watch for cells displaying DNA damage.
New findings by Gupta’s lab, which were published in Nature, shows how the cGAS-STING pathway – a pathway inside cells essential for activating the inflammatory immune response – is unleashed to prevent cancer formation by detecting DNA damage within ...
One in ten adolescents globally have used ineffective and potentially harmful non prescribed weight loss products in their lifetime, with 2% using them in the previous week.
A review, of over 90 studies of 600,000+ participants, headed by Ms Natasha Hall fro0m Monash University's School of Public Health and Preventive Medicine and published in the Journal of the American Medical Association has found that adolescent use of non prescription weight loss products is 5.5% overall, 2% in the past week; 4.4% in the past month, 6.2% in the past year and 8.9% in their lifetime.
The authors caution against the long term consequences of these ineffective treatments. END ...
One of the important breakthroughs that made it possible to program or reprogram cell fate more efficiently and with higher fidelity in a dish was discovering how to make use of a small set of molecular cowboys called pioneer transcription factors (TFs).
Every cell in our bodies has more than 200 transcription factors expressed inside, riding along the DNA helix instructing specific genes to activate and deactivate. During the early stages of fetal development, a small subset of “pioneer” TFs act inside ...
Researchers led by Prof. HUANG Qing from the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences, in collaboration with researchers from the Zhejiang Institute of Tianjin University, and Linköping University, Sweden, has proposed a general A-site alloying strategy for the preparation of noble metal-occupied MAX phases.
This work was published in Matter.
MAX phases are a family of ternary layered transition metal carbides that have attracted great attention ...
A paper describing the architectures, opportunities, and challenges of the IoB was published in the journal Green Energy and Intelligent Transportation on September 7th, 2023.
The present battery technology employed in electric vehicles (EVs) faces several critical challenges. Firstly, the limited operation range of EVs remains a major concern for potential users, as it affects their ability to travel long distances without the need for frequent recharging. Additionally, long charging times are inconvenient ...
The boundary between everyday reality and the quantum world remains unclear. The more massive an object, the more localized it becomes when being made quantum through cooling down its motion to the absolute zero. Researchers, led by Oriol Romero-Isart from the Institute for Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences (ÖAW) and the Department of Theoretical Physics at the University of Innsbruck, propose an experiment in which an optically levitated nanoparticle, cooled to its ground state, evolves in a non-optical (“dark”) potential created by electrostatic or magnetic forces. This evolution in the dark potential ...
Columbia engineers have built a new AI that shatters a long-held belief in forensics–that fingerprints from different fingers of the same person are unique. It turns out they are similar, only we’ve been comparing fingerprints the wrong way!
New York, NY—January 12, 2024—From “Law and Order” to “CSI,” not to mention real life, investigators have used fingerprints as the gold standard for linking criminals to a crime. But if a perpetrator leaves prints from different fingers in two different crime scenes, these scenes are very difficult to link, and the trace can go ...
JMIR Publications is pleased to announce that JMIR Mental Health (JMH) has been accepted for inclusion in MEDLINE, which is the U.S. National Library of Medicine's premier bibliographic database.
JMIR Mental Health had already been indexed in PubMed previously. MEDLINE is a more selective subset of PubMed, consisting of the top 5,200 biomedical journals. Indexing in MEDLINE also means that articles are now also indexed with NLM Medical Subject Headings (MeSH terms) and other metadata.
Selection for MEDLINE is a result of a thorough review of the ...
Reducing stimulant use was associated with significant improvement in measures of health and recovery among people with stimulant use disorder, even if they did not achieve total abstinence. This finding is according to an analysis of data from 13 randomized clinical trials of treatments for stimulant use disorders involving methamphetamine and cocaine. Historically, total abstinence has been the standard goal of treatment for substance use disorders, however, these findings support the growing recognition that a more nuanced perspective on measuring treatment success may be beneficial.
The study, published in Addiction, was led by scientists at the Johns Hopkins Bloomberg School of Public ...
Boston – Like a criminal entering a witness protection program, cancer cells can shed their past and take on a new identity. Detecting such an identity-switch is particularly challenging when metastatic castration-resistant prostate cancer (CRPC) advances from adenocarcinoma to neuroendocrine prostate cancer (NEPC), a very difficult cancer to treat.
Now, however, researchers at Dana-Farber Cancer Institute and the University of Trento, Italy, have developed a blood test, described in Cancer Discovery, that can ...