PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

New research uncovers biological drivers of heart disease risk

New gene mapping technique reveals how genetic alterations in cells lining blood vessels contribute to coronary artery disease, with implications for diagnostic and treatment strategies.

2024-02-07
(Press-News.org) New gene mapping technique reveals how genetic alterations in cells lining blood vessels contribute to coronary artery disease, with implications for diagnostic and treatment strategies.

KEY TAKEAWAYS

Researchers from the Brigham, the Broad Institute, and Stanford Medicine studied how "deleting" individual genes associated with coronary artery disease (CAD) impacted the expression of all the other genes in a cell to better understand underlying biology of CAD. The study focused on endothelial cells, which line blood vessels and are increasingly understood to influence CAD risk. The researchers highlighted a previously unrecognized role for the TLNRD1 gene and hypothesized that this gene may be involved in both CAD, a common disease, and cerebral cavernous malformations, a rare one. The shared genetic risk for common and rare vascular diseases is an opportunity for future diagnosis and therapy.  Over the past 15 years, researchers have identified hundreds of regions in the human genome associated with heart attack risk. However, researchers lack efficient ways to explore how these genetic variants are molecularly connected to cardiovascular disease, limiting efforts to develop therapeutics. To streamline analysis of hundreds of genetic variants associated with coronary artery disease (CAD), a team of researchers led by investigators from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, in collaboration with the Broad Institute of MIT and Harvard and Stanford Medicine, combined multiple sequencing and experimental techniques to map the relationship between known CAD variants and the biological pathways they impact. In a study published in Nature, the researchers applied this technique to endothelial cells, which line blood vessels. The team found that a key biological mechanism involved in a rare vascular disease may influence CAD risk. 

“Studying how hundreds of regions of the genome, individually or in groups, influence risk of heart attack can be a painstaking process,” said corresponding author Rajat Gupta, MD, of the Divisions of Genetics and Cardiovascular Medicine at Brigham and Women’s Hospital. “We decided we needed to have better maps showing how genetic variants affect gene expression and how genes affect biological function. If we could combine those two kinds of maps, we could make the bigger connection from variant to biological function.” 

The mapping technique developed by the researchers is called the Variant-to-Gene-to-Program (V2G2P) approach. First, in collaboration with researchers at Stanford Medicine, the researchers matched CAD loci previously identified through genome-wide association studies to genes impacted by these genetic variants. Then, they used CRISPRi-Perturb-seq, a technology developed at the Broad Institute of MIT and Harvard, to “delete” thousands of CAD-associated genes, one at a time, and to examine how each deletion impacted the expression of all the other genes in that cell. In total, the researchers sequenced 215,000 endothelial cells to determine how 2,300 “deletions” influenced expression of 20,000 other genes in each cell. With applied machine learning algorithms, they were able to identify the biological mechanisms that consistently appeared to be related to CAD-associated variants. 

In particular, the researchers found that 43 of 306 of the CAD-associated variants in endothelial cells were linked to genes in the cerebral cavernous malformations (CCM) signaling pathway. CCM is a rare, devasting vascular disease that impacts the brain, but the researchers hypothesized that smaller, subtler mutations in the genes involved in CCM may contribute to CAD risk by affecting vascular inflammation, thrombosis, and the structural integrity of the endothelium. Moreover, the researchers highlighted a previously unrecognized role for the TLNRD1 gene in regulating the CCM pathway alongside other known CCM regulators and hypothesized that TLNRD1 may be involved in both CAD, a common disease, and CCM, a rare one.   

Going forward, the researchers hope to study patients with endothelial CAD-associated variants as well as CCM patients to determine whether there are distinct opportunities for treating these populations. For the latter, the researchers are interested in determining whether further investigation into TLNRD1 can lead to better forms of genetic testing and risk stratification.  

This study focused on endothelial cells, which line blood vessels and are increasingly understood to influence CAD risk. It examined endothelial mechanisms unrelated to lipid metabolism (a known driver of CAD risk with effective therapies, like statins) in hopes of uncovering other mechanisms driving CAD risk for which therapies may yet be developed.  

“Now that we know more about this collection of endothelial cell variants, we can return to patients who have them to see if they have different clinical features or respond differently to the therapies we are already using,” Gupta said. “We are also focused on this study’s implications for CCM patients. It was a coincidence that from this genetic screen designed to look at coronary disease, we implicated new genes for a rare vascular disease, CCM. Perhaps now we can better describe the risk factors and pathways that drive it.” 

Beyond CAD and CCM, the researchers emphasize that the V2G2P approach can be used to explore the biological mechanisms driving any disease for which a cell-type relevant to that disease can be genetically modified in the lab. 

“It was remarkable that this unbiased, systematic approach — in which we deleted all candidate CAD genes in a single experiment — pointed us straight to new genes and pathways that had escaped notice. This approach will be a powerful strategy for studying many other diseases where genetic risk factors remain to be discovered,” said co-corresponding author Jesse Engreitz, PhD, assistant professor of genetics at Stanford Medicine. 

Authorship: Gavin R. Schnitzler (BWH; Broad Institute) and Helen Kang (Stanford Medicine) are co-first authors of this study. Gupta and Jesse M. Engreitz (Stanford Medicine; Broad Institute) are co-senior authors. Co-authors include Shi Fang, Ramcharan S. Angom, Vivian S. Lee-Kim, X. Rosa Ma, Ronghao Zhou, Tony Zeng, Katherine Guo, Martin S. Taylor, Shamsudheen K. Vellarikkal, Aurelie E. Barry, Oscar Sias-Garcia, Alex Bloemendal, Glen Munson, Philine Guckelberger, Tung H. Nguyen, Drew T. Bergman, Stephen Hinshaw, Nathan Cheng, Brian Cleary, Krishna Aragam, Eric S. Lander, Hilary K. Finucane, and Debabrata Mukhopadhyay. 

Disclosures: Engreitz is a shareholder of Illumina and 10X Genomics, has received materials from 10X Genomics unrelated to this work, is an equity holder in and consultant for Martingale Labs, and has received guest speaker honoraria from GSK. Taylor holds equity and has received consulting fees from ROME Therapeutics, which is not related to this work. Schnitzler, Gupta, Engreitz, Kang and Ma are inventors on a provisional patent related to this work.  

Funding: This work was supported by the Variant-to-Function Initiative at the Broad Institute, the National Heart, Lung, and Blood Institute (R01HL159176, R01HL164811, U01HL166060), the National Human Genome Research Institute (UM1HG011972, R35HG011324), the Gordon and Betty Moore Foundation, the Basic Sciences and Engineering Initiative at the Lucile Packard Children’s Hospital at Stanford University, National Institutes of Health (K99HG009917, R00HG009917, DP2HL152423, HL70567, K08DK129824), the Novo Nordisk Foundation (NNF21SA0072102); the Harvard Society of Fellows; a Khoury Innovation Award and Braunwald Scholar Award; the Broad Institute, a Florida Department of Health Cancer Research Chair’s Fund Grant (3J-02 and (M.S.T).  

Paper cited: Schnitzler, GR et al. “Mapping the convergence of genes for coronary artery disease onto endothelial cell programs” Nature DOI: 10.1038/s41586-019-0000-0  

### 

END



ELSE PRESS RELEASES FROM THIS DATE:

Resting boosts performance of lithium metal batteries

2024-02-07
Next-generation electric vehicles could run on lithium metal batteries that go 500 to 700 miles on a single charge, twice the range of conventional lithium-ion batteries in EVs today. But lithium metal technology has serious drawbacks: The battery rapidly loses its capacity to store energy after relatively few cycles of charging and discharging – highly impractical for drivers who expect rechargeable electric cars to operate for years. Scientists have been testing a variety of new materials and techniques to improve the battery’s cycle life. Now, Stanford University researchers have discovered a low-cost solution: simply drain the battery and let it rest for several hours. ...

Machine learning models for predicting disability and pain following lumbar disc herniation surgery

2024-02-07
About The Study: The findings of this study including 22,000 surgical cases suggest that machine learning models can inform about individual prognosis and aid in surgical decision-making to ultimately reduce ineffective and costly spine care. Authors: Bjørnar Berg, Ph.D., of Oslo Metropolitan University in Oslo, is the corresponding author.  To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/  (doi:10.1001/jamanetworkopen.2023.55024) Editor’s ...

Using cancer’s strength to fight against it

2024-02-07
Current immunotherapies work only against cancers of the blood and bone marrow T cells engineered by Northwestern and UCSF were able to kill tumors derived from skin, lung and stomach in mice Cell therapies can provide long-term immunity against cancer CHICAGO --- Scientists at the UC San Francisco (UCSF) and Northwestern Medicine may have found a way around the limitations of engineered T cells by borrowing a few tricks from cancer itself.  By studying mutations in malignant T cells that cause lymphoma, they zeroed in on one that imparted ...

Trends in stroke thrombolysis care metrics and outcomes by race and ethnicity

2024-02-07
About The Study: In this study of more than 1 million patients with stroke, the Target: Stroke quality initiative was associated with improvement in thrombolysis frequency, timeliness, and outcomes for all racial and ethnic groups. However, disparities persisted, indicating a need for further interventions. Authors: Gregg C. Fonarow, M.D., of the University of California, Los Angeles, is the corresponding author.  To access the embargoed study: Visit our For The Media website at this link ...

New direct links discovered between the brain and its surrounding environment

2024-02-07
In a recent study of the brain’s waste drainage system, researchers from Washington University in St. Louis, collaborating with investigators at the National Institute of Neurological Disorders and Stroke (NINDS), a part of the National Institute of Health (NIH), discovered a direct connection between the brain and its tough protective covering, the dura mater. These links may allow waste fluid to leave the brain while also exposing the brain to immune cells and other signals coming from the dura. This challenges the conventional wisdom which has suggested that the brain is cut off from its ...

Stress influences brain and psyche via immune system

2024-02-07
Chronic stress has far-reaching consequences for our bodies. For example, many stress-related psychiatric illnesses such as depression are associated with changes in the immune system. However, the underlying mechanisms of how these changes affect the brain are still largely unknown. Enzyme from immune cells in the blood affects nerves in the brain An international research team led by the University of Zurich (UZH), and the University Hospital of Psychiatry Zurich (PUK) and the Icahn School of Medicine at Mount Sinai, New York, has now uncovered a novel mechanism. “We were able to show that ...

Mimas' surprise: Tiny moon holds young ocean beneath icy shell

2024-02-07
Hidden beneath the heavily cratered surface of Mimas, one of Saturn's smallest moons, lies a secret: a global ocean of liquid water. This astonishing discovery, led by Dr. Valéry Lainey of the Observatoire de Paris-PSL and published in the journal Nature, reveals a "young" ocean formed just 5 to 15 million years ago, making Mimas a prime target for studying the origins of life in our Solar System.  “Mimas is a small moon, only about 400 kilometers in diameter, and its heavily cratered surface gave no hint of the hidden ocean beneath," says Dr Nick Cooper, ...

Quantum materials: Discovered new state of matter with chiral properties

2024-02-07
An international research group has discovered a new state of matter characterized by the existence of a quantum phenomenon called chiral current. These currents are generated on an atomic scale by a cooperative movement of electrons, unlike conventional magnetic materials whose properties originate from the quantum characteristic of an electron known as spin and their ordering in the crystal. Chirality is a property of extreme importance in science, for example, it is fundamental also to understand DNA. ...

Towards a better understanding of endothelial cell transformation in cancer progression

Towards a better understanding of endothelial cell transformation in cancer progression
2024-02-07
In a new study, Tokyo Medical and Dental University researchers shed light on partial endothelial-to-mesenchymal transition in the tumor microenvironment Tokyo, Japan - Endothelial-mesenchymal transition (EndoMT, also termed as EndMT), a biological process resulting in the formation of mesenchymal (or lineage-committed) phenotypes from endothelial cells (lining blood vessels), plays a crucial role in tumor progression. Despite the important role of EndoMT, the underlying mechanism and characteristics of cells in intermediate/partial EndoMT remain largely unexplored. Now, researchers from Japan have developed a system to study these EndoMT stages.  In ...

After prison, perpetrators of genocide say they’ve changed

2024-02-07
COLUMBUS, Ohio – After serving decades in prison, Rwandans convicted of crimes of genocide returned to their communities articulating a “narrative of redemption,” saying they were good people, despite their past crimes.   And they were hopeful about their prospects for reintegrating into their communities.   Many of these former prisoners had been convicted of murder, often of their own neighbors, connected to the 1994 genocide in Rwanda. But they said they had changed – even while minimizing their role in the killings.   In ...

LAST 30 PRESS RELEASES:

Study published in NEJM Catalyst finds patients cared for by MedStar Health’s Safe Babies Safe Moms program have better outcomes in pregnancy, delivery, and postpartum

Octopus arms have segmented nervous systems to power extraordinary movements

Protein shapes can help untangle life’s ancient history

Memory systems in the brain drive food cravings that could influence body weight

Indigenous students face cumbersome barriers to attaining post-secondary education

Not all Hot Jupiters orbit solo

Study shows connection between childhood maltreatment and disease in later life

Discovery of two planets sheds new light on the formation of planetary systems

New West Health-Gallup survey finds incoming Trump administration faces high public skepticism over plans to lower healthcare costs

Reading signs: New method improves AI translation of sign language

Over 97 million US residents exposed to unregulated contaminants in their drinking water

New large-scale study suggests no link between common brain malignancy and hormone therapy

AI helps to identify subjective cognitive decline during the menopause transition

Machine learning assisted plasmonic absorbers

Healthy lifestyle changes shown to help low back pain

Waking up is not stressful, study finds

Texas A&M AgriLife Research aims for better control of widespread tomato spotted wilt virus

THE LANCET DIABETES & ENDOCRINOLOGY: Global Commission proposes major overhaul of obesity diagnosis, going beyond BMI to define when obesity is a disease.

Floating solar panels could support US energy goals

Long before the L.A. fires, America’s housing crisis displaced millions

Breaking barriers: Collaborative research studies binge eating disorders in older Hispanic women

UVA receives DURIP grant for cutting-edge ceramic research system

Gene editing extends lifespan in mouse model of prion disease

Putting a lid on excess cholesterol to halt bladder cancer cell growth

Genetic mutation linked to higher SARS-CoV-2 risk

UC Irvine, Columbia University researchers invent soft, bioelectronic sensor implant

Harnessing nature to defend soybean roots

Yes, college students gain holiday weight too—but in the form of muscle not fat

Beach guardians: How hidden microbes protect coastal waters in a changing climate

Rice researchers unlock new insights into tellurene, paving the way for next-gen electronics

[Press-News.org] New research uncovers biological drivers of heart disease risk
New gene mapping technique reveals how genetic alterations in cells lining blood vessels contribute to coronary artery disease, with implications for diagnostic and treatment strategies.