PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Sweet success: researchers crack sugarcane’s complex genetic code

Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants

Sweet success: researchers crack sugarcane’s complex genetic code
2024-03-27
(Press-News.org) Modern hybrid sugarcane is one of the most harvested crops on the planet, used to make products including sugar, molasses, bioethanol, and bio-based materials. It also has one of the most complex genetic blueprints.

Until now, sugarcane’s complicated genetics made it the last major crop without a complete and highly accurate genome. Scientists have developed and combined multiple techniques to successfully map out sugarcane’s genetic code. With that map, they were able to verify the specific location that provides resistance to the impactful brown rust disease that, unchecked, can devastate a sugar crop. Researchers can also use the genetic sequence to better understand the many genes involved in sugar production.

The research was conducted as part of the Community Science Program at the U.S. Department of Energy Joint Genome Institute (JGI), a DOE Office of Science user facility at Lawrence Berkeley National Laboratory (Berkeley Lab). The study is published today in the journal Nature, and the genome is available through the JGI’s plant portal, Phytozome.

“This was the most complicated genome sequence we’ve yet completed,” said Jeremy Schmutz, Plant Program lead at the JGI and faculty investigator at the HudsonAlpha Institute for Biotechnology. “It shows how far we’ve come. This is the kind of thing that 10 years ago people thought was impossible. We’re able to accomplish goals now that we just didn't think were possible to do in plant genomics.” 

Sugarcane’s genome is so complex both because it is large and because it contains more copies of chromosomes than a typical plant, a feature called polyploidy. Sugarcane has about 10 billion base pairs, the building blocks of DNA; for comparison, the human genome has about 3 billion. Many sections of sugarcane’s DNA are identical both within and across different chromosomes. That makes it a challenge to correctly reassemble all the small segments of DNA while reconstructing the full genetic blueprint. Researchers solved the puzzle by combining multiple genetic sequencing techniques, including a newly developed method known as PacBio HiFi sequencing that can accurately determine the sequence of longer sections of DNA.

Having a complete “reference genome” makes it easier to study sugarcane, enabling researchers to compare its genes and pathways with those in other well-studied crops such as sorghum or other biofuel crops of interest, like switchgrass and miscanthus. By comparing this reference to other crops, it becomes easier to understand how each gene influences a trait of interest, such as which genes are highly expressed during sugar production, or which genes are important for disease resistance. This study found that the genes responsible for resistance to brown rust, a fungal pathogen that previously caused millions of dollars of damage to sugarcane crops, are found in only one location in the genome.

“When we sequenced the genome, we were able to fill a gap in the genetic sequence around brown rust disease,” said Adam Healey, first author of the paper and a researcher at HudsonAlpha. “There are hundreds of thousands of genes in the sugarcane genome, but it’s only two genes, working together, that protect the plant from this pathogen. Across plants, there are only a handful of instances that we know of where protection works in a similar way. Better understanding of how this disease resistance works in sugarcane could help protect other crops facing similar pathogens down the road."

Researchers studied a cultivar of sugarcane known as R570 that has been used for decades around the world as the model to understand sugarcane genetics. Like all modern sugarcane cultivars, R570 is a hybrid made by crossing the domesticated species of sugarcane (which excelled in sugar production) and a wild species (which carried the genes for disease resistance). 

“Knowing R570’s complete genetic picture will let researchers trace which genes descended from which parent, enabling breeders to more easily identify the genes that control the traits of interest for improved production,” said Angélique D’Hont, last author of the paper and a sugarcane researcher at the French Agricultural Research Center for International Development (CIRAD).

Improving future varieties of sugarcane has potential applications in both agriculture and bioenergy. Enhancing how sugarcane produces sugar could increase the yield farmers get from their crops, providing more sugar from the same amount of growing space. Sugarcane is an important feedstock, or starting material, for producing biofuels, particularly ethanol, and other bioproducts. The residues that remain after the pressing of sugarcane, referred to as bagasse, are an important type of agricultural residue that can also be broken down and converted into biofuels and bioproducts. 

“We are working to understand how specific genes in plants relate to the quality of the biomass we get downstream, which we can then turn into biofuels and bioproducts,” said Blake Simmons, Chief Science and Technology Officer for the Joint BioEnergy Institute, a DOE Bioenergy Research Center led by Berkeley Lab. “With a better understanding of sugarcane genetics, we can better understand and control the plant genotypes needed to produce the sugars and bagasse-derived intermediates we need for sustainable sugarcane conversion technologies at a scale relevant to the bioeconomy.” 

This study involved collaborations with institutes from around the world, including France (CIRAD, UMR-AGAP, ERCANE); Australia (CSIRO Agriculture and Food, Queensland Alliance for Agriculture and Food Innovation/ARC Centre of Excellence for Plant Success in Nature and Agriculture - University of Queensland, Sugar Research Australia); Czech Republic (Institute of Experimental Botany of the Czech Academy of Sciences); and the United States (Corteva Agriscience, Joint BioEnergy Institute). The genome was sequenced at the JGI with work completed at the JGI partner laboratories, the Arizona Genomics Institute and the HudsonAlpha Institute for Biotechnology.

The Joint Genome Institute is a Department of Energy Office of Science User Facility. The Joint BioEnergy Institute is a DOE Bioenergy Research Center.

###

Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to delivering solutions for humankind through research in clean energy, a healthy planet, and discovery science. Founded in 1931 on the belief that the biggest problems are best addressed by teams, Berkeley Lab and its scientists have been recognized with 16 Nobel Prizes. Researchers from around the world rely on the lab’s world-class scientific facilities for their own pioneering research. Berkeley Lab is a multiprogram national laboratory managed by the University of California for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

END


[Attachments] See images for this press release:
Sweet success: researchers crack sugarcane’s complex genetic code

ELSE PRESS RELEASES FROM THIS DATE:

WISPR team images turbulence within solar transients for the first time

WISPR team images turbulence within solar transients for the first time
2024-03-27
WASHINGTON — The Wide-field Imager for Parker Solar Probe (WISPR) Science Team, led by the U.S. Naval Research Laboratory (NRL), captured the development of turbulence as a Coronal Mass Ejection (CME) interacted with the ambient solar wind in the circumsolar space. This discovery is reported in the Astrophysical Journal. Taking advantage of its unique location inside the Sun’s atmosphere, the NRL-built WISPR telescope on NASA’s Parker Solar Probe (PSP) mission, operated by the Johns Hopkins University Applied Physics Laboratory (JHUAPL), captured in unparalleled detail the interaction between ...

Undocumented immigrants faced unique mental health challenges during COVID-19 pandemic

2024-03-27
Four years after the U.S. shut down in the face of the COVID-19 pandemic, research from Rice University suggests undocumented immigrants’ mental health challenges were compounded due to stresses stemming from their unauthorized status. “Implications of Undocumented Status for Latinx Families During the COVID-19 Pandemic: A Call to Action” appears in the Journal of Clinical Child & Adolescent Psychology and examines how undocumented immigrants navigated the COVID-19 pandemic. During a series of in-depth interviews with undocumented individuals or those from ...

Old immune systems revitalized in Stanford Medicine mouse study, improving vaccine response

2024-03-27
Planes, trains, boats, automobiles and even feet. During the past decades and centuries, global travel and human migration have made all of us more worldly — from our broadening awareness of the world beyond our birthplaces, to our more sophisticated palates, to our immune systems that are increasingly challenged by unfamiliar bacteria and viruses. In the elderly, these newly imported pathogens can gain the upper hand frighteningly quickly. Unfortunately, however, vaccination in this age group isn’t as effective as it is in younger people. Now a study conducted in mice by Stanford ...

Discovery has potential to solve the billion-dollar global cost of poorly managed wound healing

Discovery has potential to solve the billion-dollar global cost of poorly managed wound healing
2024-03-27
Scientists have uncovered a key step in the wound healing process that becomes disabled in diseases like diabetes and ageing, contributing to a global healthcare cost of managing poorly healing wounds exceeding $250 billion a year. Importantly, the research published in Nature reveals a molecule involved in the healing of tissues that – when injected into animal models – leads to a drastic acceleration of wound closure, up to 2.5 times faster, and 1.6 times more muscle regeneration. Lead researcher, Associate Professor Mikaël Martino, from Monash University’s Australian Regenerative Medicine Institute (ARMI) in Melbourne, Australia, said the discovery ...

Newly uncovered history of a key ocean current carries a warning on climate

Newly uncovered history of a key ocean current carries a warning on climate
2024-03-27
It carries more than 100 times as much water as all the world's rivers combined. It reaches from the ocean's surface to its bottom, and measures as much as 2,000 kilometers across. It connects the Indian, Atlantic and Pacific oceans, and plays a key role in regulating global climate. Continuously swirling around the southernmost continent, the Antarctic Circumpolar Current is by far the world's most powerful and consequential mover of water. In recent decades it has been speeding up, but scientists have been unsure whether ...

Evolution of the most powerful ocean current on Earth

Evolution of the most powerful ocean current on Earth
2024-03-27
The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets. An international research team led by the Alfred Wegener Institute and the Lamont-Doherty Earth Observatory have now used sediments taken from the South Pacific to reconstruct the flow speed in the last 5.3 million years. Their data show that during glacial periods, the current slowed; during interglacials, it accelerated. Consequently, if ...

New topological metamaterial amplifies sound waves exponentially

New topological metamaterial amplifies sound waves exponentially
2024-03-27
Researchers at AMOLF, in collaboration with partners from Germany, Switzerland, and Austria, have realized a new type of metamaterial through which sound waves flow in an unprecedented fashion. It provides a novel form of amplification of mechanical vibrations, which has the potential to improve sensor technology and information processing devices. This metamaterial is the first instance of a so-called ‘bosonic Kitaev chain’, which gets its special properties from its nature as a topological material. It was realized by making nanomechanical resonators interact with laser light through radiation pressure forces. The discovery, which is published on March ...

Making long-term memories requires nerve-cell damage

Making long-term memories requires nerve-cell damage
2024-03-27
March 27, 2024—(BRONX, NY)—Just as you can’t make an omelet without breaking eggs, scientists at Albert Einstein College of Medicine have found that you can’t make long-term memories without DNA damage and brain inflammation. Their surprising findings were published online today in the journal Nature. “Inflammation of brain neurons is usually considered to be a bad thing, since it can lead to neurological problems such as Alzheimer’s and Parkinson’s disease,” said study leader Jelena Radulovic, M.D., Ph.D., professor in the Dominick P. Purpura Department of Neuroscience, professor of psychiatry and behavioral sciences, and the Sylvia ...

Anastasopoulos studying machine translation for Austronesian languages

2024-03-27
Anastasopoulos Studying Machine Translation For Austronesian Languages  Antonios Anastasopoulos, Assistant Professor, Computer Science, received funding for: "Machine Translation for Austronesian Languages."  He is helping to develop a solution that can automatically translate languages of the southeast Asia and Pacific regions, with a particular focus on languages of lndonesia and the Philippines.  Anastasopoulos received $63,680 from Barron Associates, Inc., on a subaward from the U.S. Department of the Army for this project. Funding began ...

Complete sugarcane genome sequence opens up new era in breeding

Complete sugarcane genome sequence opens up new era in breeding
2024-03-27
The first comprehensive reference genome for ‘R570’, a widely cultivated modern sugarcane hybrid, has been completed in a landmark advancement for agricultural biotechnology.  Sugarcane contributes $2.2 billion to the Australian economy and accounts for 80 per cent of global sugar supply. The mapping of its genetic blueprint opens opportunities for new tools to enhance breeding programs around the world for this valuable bioenergy and food crop.   It is one of the last major crops to be fully sequenced, due to the fact its genome is almost three times the size of humans’ and far more ...

LAST 30 PRESS RELEASES:

New study from Chapman University reveals rapid return of water from ground to atmosphere through plants

World's darkest and clearest skies at risk from industrial megaproject

UC Irvine-led discovery of new skeletal tissue advances regenerative medicine potential

Pulse oximeters infrequently tested by manufacturers on diverse sets of subjects

Press Registration is open for the 2025 AAN Annual Meeting

New book connects eugenics to Big Tech

Electrifying your workout can boost muscles mass, strength, UTEP study finds

Renewed grant will continue UTIA’s integrated pest management program

Researchers find betrayal doesn’t necessarily make someone less trustworthy if we benefit

Pet dogs often overlooked as spreader of antimicrobial-resistant Salmonella

Pioneering new tool will spur advances in catalysis

Physical neglect as damaging to children’s social development as abuse

Earth scientist awarded National Medal of Science, highest honor US bestows on scientists

Research Spotlight: Lipid nanoparticle therapy developed to stop tumor growth and restore tumor suppression

Don’t write off logged tropical forests – converting to oil palm plantations has even wider effects on ecosystems

Chimpanzees are genetically adapted to local habitats and infections such as malaria

Changes to building materials could store carbon dioxide for decades

EPA finalized rule on greenhouse gas emissions by power plants could reduce emissions with limited costs

Kangaroos kept a broad diet through late Pleistocene climate changes

Sex-specific neural circuits underlie shifting social preferences for male or female interaction among mice

The basis of voluntary movements: A groundbreaking study in ‘Science’ reveals the brain mechanisms controlling natural actions

Storing carbon in buildings could help address climate change

May the force not be with you: Cell migration doesn't only rely on generating force

NTU Singapore-led discovery poised to help detect dark matter and pave the way to unravel the universe’s secrets

Researchers use lab data to rewrite equation for deformation, flow of watery glacier ice

Did prehistoric kangaroos run out of food?

HKU Engineering Professor Kaibin Huang named Fellow of the US National Academy of Inventors

HKU Faculty of Arts Professor Charles Schencking elected as Corresponding Fellow of the Australian Academy of Humanities

Rise in post-birth blood pressure in Asian, Black, and Hispanic women linked to microaggressions

Weight changes and heart failure risk after breast cancer development

[Press-News.org] Sweet success: researchers crack sugarcane’s complex genetic code
Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants