PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Unveiling the math behind your calendar

Case Western Reserve research explores statistical mysteries of everyday tasks, from Doodle polls to efficient scheduling

2024-09-13
(Press-News.org) In a world where organizing a simple meeting can feel like herding cats, new research from Case Western Reserve University reveals just how challenging finding a suitable meeting time becomes as the number of participants grows.

The study, published in the European Physical Journal B, dives into the mathematical complexities of this common task, offering new insights into why scheduling often feels so impossible.

“If you like to think the worst about people, then this study might be for you,” quipped researcher Harsh Mathur, professor of physics at the College of Arts and Sciences at CWRU. “But this is about more than Doodle polls. We started off by wanting to answer this question about polls, but it turns out there is more to the story.”

Researchers used mathematical modeling to calculate the likelihood of successfully scheduling a meeting based on several factors: the number of participants (m), the number of possible meeting times (τ) and the number of times each participant is unavailable (r).

What they found: As the number of participants grows, the probability of scheduling a successful meeting decreases sharply.

Specifically, the probability drops significantly when more than five people are involved—especially if participant availability remains consistent.

“We wanted to know the odds,” Mathur said. “The science of probability actually started with people studying gambling, but it applies just as well to something like scheduling meetings. Our research shows that as the number of participants grows, the number of potential meeting times that need to be polled increases exponentially.

“The project had started half in jest but this exponential behavior got our attention. It showed that scheduling meetings is a difficult problem, on par with some of the great problems in computer science.”

‘More to the story’ Interestingly, researchers found a parallel between scheduling difficulties and physical phenomena. They observed that as the probability of a participant rejecting a proposed meeting time increases, there’s a critical point where the likelihood of successfully scheduling the meeting drops sharply. It’s a phenomenon similar to what is known as “phase transitions” in physics, Mathur said, such as ice melting into water.

“Understanding phase transitions mathematically is a triumph of physics,” he said. “It’s fascinating how something as mundane as scheduling can mirror the complexity of phase transitions.”

 

Mathur also noted the study’s broader implications, from casual scenarios like sharing appetizers at a restaurant to more complex settings like drafting climate policy reports, where agreement among many is needed.

“Consensus-building is hard,” Mathur said. “Like phase transitions, it’s complex. But that’s also where the beauty of mathematics lies—it gives us tools to understand and quantify these challenges.”

Mathur said the study contributes insights into the complexities of group coordination and decision-making, with potential applications across various fields.

Joining Mathur in the study were physicists Katherine Brown, of Hamilton College, and Onuttom Narayan, of the University of California, Santa Cruz.

END


ELSE PRESS RELEASES FROM THIS DATE:

New research finds employees feel pressure to work while sick, which has been shown to cost companies billions

New research finds employees feel pressure to work while sick, which has been shown to cost companies billions
2024-09-13
EMBARGOED FOR RELEASE UNTIL 9 A.M. ET ON SEPT. 13, 2024 TAMPA, Fla. (Sept. 10, 2024) – Employees often feel pressure to work while sick, leading to lost productivity, deviant behaviors such as theft and mistreatment of coworkers and intent to leave the organization, according to new research led by University of South Florida Assistant Professor of Psychology Claire Smith. The cost of such behavior, known as “presenteeism,” can be staggering – as much as $150 billion annually, according to Harvard Business Review. The findings will be ...

Harnessing egg yolk power: A new approach to paprika oleoresin stability

Harnessing egg yolk power: A new approach to paprika oleoresin stability
2024-09-13
Paprika oleoresin (PO), extracted from chili peppers, is renowned for its vibrant color and beneficial health properties, such as antioxidant and anti-inflammatory effects. However, its lipophilic nature and sensitivity to factors like oxygen, heat, and light restrict its use in water-based foods. While previous approaches, including emulsions and liposomes, have aimed to improve PO’s stability, the results have been limited. These persistent challenges underscore the need for new stabilization methods for PO. The study (DOI: 10.26599/FSAP.2024.9240064), led by scientists from Chengdu University and Huazhong Agricultural ...

Millions of depressed Americans could benefit from psychedelic therapy, study finds

2024-09-13
Atlanta, Georgia - In the wake of mounting evidence for the efficacy of psychedelic-assisted therapies, the U.S. Food and Drug Administration (FDA) is considering approving psilocybin, the active ingredient in “magic mushrooms,” for treating depression in the near future. As this watershed moment approaches, a critical question arises: Just how many people might stand to benefit from this promising but still unproven therapy? Shedding light on this high-stakes inquiry, a first-of-its-kind peer-reviewed study led by researchers at Emory University, the University of Wisconsin-Madison and ...

Towards the realization of compact and portable nuclear clocks

Towards the realization of compact and portable nuclear clocks
2024-09-13
Scientists use atomic clocks to measure ‘second,’ the smallest standard unit of time, with great precision. These clocks use natural oscillations of electrons in atoms, similar to how pendulums work in old grandfather clocks. The quest for an even more precise timekeeper led to the discovery of nuclear clocks, which use the transitions of atomic nuclei instead of electrons to keep time. A rising contender for the development of ultra-precise nuclear optical clocks is the nuclear first-excited state of 229Th isotope. Its long half-life of 103 seconds and low excitation energy of a few electron ...

Global warming's economic blow: Risks rise more rapidly for the rich

2024-09-13
In a new study by the Potsdam Institute for Climate Impact Research (PIK), researchers analysed how erratic weather events, increasingly intensified by global warming, affect global production and consumption across different income groups. The results confirm previous studies that the poorest people worldwide bear the greatest economic risks from climate change. Surprisingly, the risk for the wealthy is growing the fastest. Economies in transition like Brazil or China are also highly vulnerable to severe impacts and negative trade ...

CRISPR/Cas9 modifies euglena to create potential biofuel source

CRISPR/Cas9 modifies euglena to create potential biofuel source
2024-09-13
News about biofuels sometimes mentions used cooking oil as a feedstock, but if these substances contain animal fat, they can solidify in colder temperatures. This happens because, chemically, the fatty acids of these and many other saturated fats have long carbon chains with single bonds. Enter the euglena. An Osaka Metropolitan University team has found a way to have one species of this microalgae produce wax esters with shorter carbon chains than usual. Using CRISPR/Cas9 to edit the genome of Euglena gracilis, Dr. Masami Nakazawa and her team at the Graduate School of Agriculture’s ...

New 'PVDF alternative battery binder' surpasses EU environmental regulations!

New PVDF alternative battery binder surpasses EU environmental regulations!
2024-09-13
A team led by Dr. Hyeon-Gyun Im and Dr. Dong Jun Kang from the Insulation Materials Research Center of Korea Electrotechnology Research Institute (KERI), in collaboration with Dr. Jung-keun Yoo from KIST and Professor Jong-soon Kim from Sungkyunkwan University, have developed a technology that enhances the performance of binders—often the 'unsung heroes' in the field of secondary batteries—while using environmentally friendly materials. This technology has been published in a prestigious international ...

The Menopause Society launches Making Menopause Work™ Initiative

2024-09-13
CHICAGO (Sept 13, 2024)—Menopause is a natural life transition occurring when many women are at the “top of their game.” Unsupported menopause symptoms drive up employer healthcare costs and cause roughly $1.8 billion in missed workdays. To help employers retain these valued workers and build cultures of well-being, The Menopause Society launched Making Menopause Work™ based on new science-based Consensus Recommendations. The Recommendations are published online in Menopause, the journal of The Menopause ...

Exploring ternary metal sulfides as electrocatalyst for carbon dioxide reduction reactions

Exploring ternary metal sulfides as electrocatalyst for carbon dioxide reduction reactions
2024-09-13
One of the most promising avenues for actively reducing CO2 levels in the atmosphere is recycling it into valuable chemicals via electrocatalytic CO2 reduction reactions. With a suitable electrocatalyst, this can be achieved under mild conditions and at a low energy cost. Many types of electrocatalysts are being actively investigated, but most suffer from either low electrocatalytic activity, poor selectivity, or low stability. Metal sulfides might hold the huge potential solution to this puzzle. By combining ionic and covalent characteristics, this unique family of materials offers good catalytic activity and energy efficiency. The ternary metal system is expected to be a better ...

Breakthrough in proton barrier films using pore-free graphene oxide

Breakthrough in proton barrier films using pore-free graphene oxide
2024-09-13
Kumamoto University’s research team, led by Assistant Professor Kazuto Hatakeyama and Professor Shintaro Ida of Institute of Industrial Nanomaterials, has announced a groundbreaking development in hydrogen ion barrier films using graphene oxide (GO) that lacks internal pores. This innovative approach promises significant advancements in protective coatings for various applications.   In their study, the research team successfully synthesized and developed a thin film from a new form of graphene oxide that does not contain pores. Traditionally, ...

LAST 30 PRESS RELEASES:

Reality check: making indoor smartphone-based augmented reality work

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Black men — including transit workers — are targets for aggression on public transportation, study shows

Troubling spike in severe pregnancy-related complications for all ages in Illinois

Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas

Need a landing pad for helicopter parenting? Frame tasks as learning

New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability

#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all

Earliest fish-trapping facility in Central America discovered in Maya lowlands

São Paulo to host School on Disordered Systems

New insights into sleep uncover key mechanisms related to cognitive function

USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery

Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance

3D-printing advance mitigates three defects simultaneously for failure-free metal parts 

Ancient hot water on Mars points to habitable past: Curtin study

In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon

Simplicity is key to understanding and achieving goals

Caste differentiation in ants

Nutrition that aligns with guidelines during pregnancy may be associated with better infant growth outcomes, NIH study finds

New technology points to unexpected uses for snoRNA

Racial and ethnic variation in survival in early-onset colorectal cancer

Disparities by race and urbanicity in online health care facility reviews

Exploring factors affecting workers' acquisition of exercise habits using machine learning approaches

Nano-patterned copper oxide sensor for ultra-low hydrogen detection

Maintaining bridge safer; Digital sensing-based monitoring system

A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity

A groundbreaking new approach to treating chronic abdominal pain

ECOG-ACRIN appoints seven researchers to scientific committee leadership positions

New model of neuronal circuit provides insight on eye movement

Cooking up a breakthrough: Penn engineers refine lipid nanoparticles for better mRNA therapies

[Press-News.org] Unveiling the math behind your calendar
Case Western Reserve research explores statistical mysteries of everyday tasks, from Doodle polls to efficient scheduling