PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Penny for your thoughts? Master copper regulator discovery may offer Alzheimer’s clues

Penny for your thoughts? Master copper regulator discovery may offer Alzheimer’s clues
2024-09-18
(Press-News.org) New therapeutic opportunities often emerge from research on simple organisms. For instance, the 2020 Nobel Prize in Chemistry awarded to Emmanuelle Charpentier, Ph.D., and Jennifer Doudna, Ph.D., for their CRISPR-based DNA editing discovery began with studies using bacteria just a decade prior. Today, CRISPR therapies are approved for several disorders, and more such treatments are in the offing.

Recognizing the translational potential of studies in simpler animal models, a team of scientists led by Randy D. Blakely, Ph.D., at Florida Atlantic University’s Schmidt College of Medicine and FAU Stiles-Nicholson Brain Institute, have taken an important step that may lead to treatments for human neurodegenerative disorders. Their work begins with a tiny, inauspicious roundworm.

Formally known as Caenorhabditis elegans, the nematode is a favorite of neuroscientists seeking to identify and manipulate genes that impact neural signaling and health. In a new study, published in the Proceedings of the National Academy of Sciences, Blakely and colleagues link the function of the worm gene swip-10 to the control of copper. While known for its use in electrical wiring, pots, pans and jewelry, copper also is a vital micronutrient that plays several essential roles in all cells, including those of the human brain.

“Copper is required for the function of mitochondria, the powerhouse of cells, and its production of the energy-storing molecule ATP, which fuels hundreds of vital body functions such as muscle contraction, digestion and heart function as well as the signaling of brain neurons that allows us to think and feel,” said Blakely, senior author, and David J.S. Nicholson Distinguished Professor in Neuroscience at FAU. “Copper also helps protect cells from harmful molecules termed reactive oxygen species, or ROS, which in excess can damage proteins and DNA, ultimately driving cell death, including neurons that die in Parkinson’s and Alzheimer’s disease.”

Copper exists mainly in two forms: cuprous copper (termed Cu(I)) and cupric copper (termed Cu(II)). These two forms are managed by different proteins in the body and can be converted from one to the other to support various chemical reactions vital to human health. Scientists are still studying how the body maintains the right balance between these two copper forms, which is important, as too much or too little of either can wreak havoc on cells, particularly neurons. This is where swip-10 enters the picture.

Blakely’s worm team, led by former member Andrew Hardaway, Ph.D., reported the identification of the swip-10 gene in 2015, following a screen for molecules needed to control the activity of worm dopamine neurons, specifically those that control their ability to swim.

“Worms with a damaging mutation in swip-10 initially swim normally, but unlike normal worms whose swimming continues for 30 minutes or more, in less than a minute, the mutants display swimming-induced paralysis or Swip,” said Blakely. “We tracked the paralysis to an excess activity of their dopamine neurons and published what we thought was a fairly complete story.”

But further studies by another past graduate student in the Blakely lab, Chelsea Gibson, Ph.D., showed that the overactive dopamine neurons in swip-10 mutants exhibit degeneration much earlier in life than normal worms, as seen in Parkinson’s disease (PD). Other types of neurons in swip-10 mutant worms besides those making dopamine also demonstrate degeneration, suggesting to Blakely’s team that links to brain disease might mirror other neurodegenerative disorders besides PD.  

A clue to such disorders came with the decoding of the swip-10 gene sequence where Blakely’s team found that humans possess a gene highly related to swip-10, termed MBLAC1. Then, in 2019, geneticist Iris Broce, Ph.D., at the University of California, San Francisco, fingered MBLAC1 as a risk factor for a particular form of Alzheimer’s disease (AD), one accompanied by cardiovascular disease (AD-CDV). Importantly, they also found a significant reduction in MBLAC1 expression in the frontal cortex of humans with AD-CDV, suggesting a role for MBLAC1 in supporting the health of both the brain and peripheral organs such as the heart. So where is the copper link?

“It turns out that MBLAC1 encodes an enzyme key to the production of another class of proteins, termed histones, well known to compact long strands of DNA so they can form chromosomes,” said Blakely.

But certain histones possess an additional, surprising activity, the ability to convert Cu(II) to Cu(I), and when mutations in these proteins were generated by Narsis Attar, M.D., Ph.D., at the University of California, Los Angeles, these cells show much lower production of Cu(I), higher amounts of ROS, their mitochondria function poorly, and they fail to thrive.  

Connecting the dots across the years, Peter Rodriguez Jr., a current graduate student and lead scientist on the study in the Blakely lab, reasoned that swip-10 mutants also would fail to produce the requisite histones, leading to a loss of Cu(I), mitochondrial dysfunction, and an elevation of ROS, which could be a major reason the worm’s dopamine neuron die. In the new study, Rodriguez Jr., and collaborators show that this is indeed the case, and moreover, find that they can rescue ATP production, reduce ROS, and promote survival of dopamine neurons by supplementing their diet with Cu(I) or by exposing them to a drug known to increase Cu(I) levels in cells.

“Surprisingly, the impact of loss of swip-10 on Cu(I), worm bioenergetics, and oxidative stress is not just an impact felt by dopamine neurons,” said Rodriguez Jr. “Rather, Cu(I) levels, and these good things that Cu(I) does, are greatly diminished body-wide. Another striking finding is that though changes occur with Cu(I) and its actions across the body, these deficits arise from the loss of swip-10 from a small number of cells in the head of the animal known as glia, which make up only 5% of the cells in the animal’s body.”  

Glial cells are well known to support the signaling and health of neurons in many organisms. Indeed, in the worm, Rodriguez Jr. could restore the health of worms, as well as whole body Cu(I) levels, by expressing a normal copy of the swip-10 gene only in glial cells.

“The powerful control of Cu(I) exerted by swip-10 points to a novel opportunity to sustain neuronal health,” said Blakely.    

Interestingly, the antibiotic ceftriaxone, which the Blakely lab found to bind MBLAC1 protein, has been reported by multiple groups to be neuroprotective in vitro and in animal models, though its mechanism of action is currently unclear. Blakely’s team believes ceftriaxone’s action relates to modulating copper homeostasis.

“Ceftriaxone isn’t a particularly powerful drug, doesn’t get into the brain very well compared to other medications, and can cause antibiotic resistance and other side-effects. So it’s not surprising that it hasn’t proved useful in the clinic,” said Blakely. “Perhaps now that we have a better idea as to what swip-10 and MBLAC1 do, we think that we may be able to design a truly useful medication to treat neurodegenerative disease.”

Study co-authors are Rodriguez, Jr., first author; Vrinda Kalia, Ph.D., Columbia University; Cristina Fenollar Ferrer, Ph.D., FAU Stiles-Nicholson Brain Institute; Chelsea L. Gibson, Ph.D., Oak Ridge Institute for Science and Education; Zayna Gichi, Blakely Lab; André Rajoo, FAU Harriet L. Wilkes Honors College; Carson D. Matier, Ph.D.; University of California, Berkeley; Aidan Pezacki and Tong Xiao; Princeton University and University of California, Berkeley; Lucia Carvelli, Ph.D., FAU Harriet L. Wilkes Honors College and FAU Stiles-Nicholson Brain Institute; Christopher J. Chang, Ph.D., Princeton University and University of California, Berkeley; Gary W. Miller, Ph.D., Columbia University; Andy V. Khamoui, Ph.D., FAU Charles E. Schmidt College of Science; and Jana Boerner, Ph.D., FAU Stiles-Nicholson Brain Institute.

The research was supported by Steven and Deborah Schmidt, the Florida Department of Health, and a pilot award from the FAU Mangurian Center for Brain Health (awarded to Blakely), and the National Institutes of Health (awarded to Miller, Kalia and Chang).

- FAU -

About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 30,000 undergraduate and graduate students across six campuses located along the southeast Florida coast. In recent years, the University has doubled its research expenditures and outpaced its peers in student achievement rates. Through the coexistence of access and excellence, FAU embodies an innovative model where traditional achievement gaps vanish. FAU is designated a Hispanic-serving institution, ranked as a top public university by U.S. News & World Report and a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. For more information, visit www.fau.edu.

 

END


[Attachments] See images for this press release:
Penny for your thoughts? Master copper regulator discovery may offer Alzheimer’s clues

ELSE PRESS RELEASES FROM THIS DATE:

Keck Hospital of USC named a 2024 top performer by Vizient, Inc.

Keck Hospital of USC named a 2024 top performer by Vizient, Inc.
2024-09-18
LOS ANGELES — Keck Hospital of USC has been named a top performer in the 2024 Bernard A. Birnbaum, MD, Quality Leadership award by Vizient, Inc., a leading health care performance improvement company. The top performer designation acknowledges the hospital’s excellence in delivering high-quality care as measured by the annual Vizient Quality and Accountability Study. Keck Hospital was among 14 top performers out of 115 comprehensive academic medical centers nationally and achieved a five-star ...

NSF and Simons Foundation launch 2 AI Institutes to help astronomers understand the cosmos

NSF and Simons Foundation launch 2 AI Institutes to help astronomers understand the cosmos
2024-09-18
Note: Embargoed until 8:00 a.m. ET on Sept. 18, 2024 From the early telescopes made hundreds of years ago by Galileo to the sophisticated astronomical observatories of today, people have built increasingly innovative tools to probe and measure the cosmos. Soon, researchers at two new institutes funded by the U.S. National Science Foundation and the Simons Foundation will build a new breed of astronomical tools by harnessing the uniquely powerful abilities of artificial intelligence to assist and accelerate humanity's understanding of the universe. The new National Artificial Intelligence ...

Exploring the effect of low sodium concentrations on brain microglial cells

Exploring the effect of low sodium concentrations on brain microglial cells
2024-09-18
Low serum sodium concentrations in blood are called hyponatremia, a prevalent clinical electrolyte disorder. In contrast to acute hyponatremia, chronic hyponatremia has been previously considered asymptomatic because the brain can successfully adapt to hyponatremia. If not treated, chronic hyponatremia can lead to complications such as fractures, falls, memory impairment, and other mental issues. Treating the chronic condition is, however, quite tricky as it has been observed that overly rapid correction of hyponatremia ...

New Alzheimer’s studies reveal disease biology, risk for progression, and the potential for a novel blood test

2024-09-18
EMBARGOED by Alzheimer’s & Dementia until 7 a.m., ET, Sept. 18, 2024 Contact: Gina DiGravio, Boston University, 617-358-7838, ginad@bu.edu Contact: Andrea Zeek, IU School of Medicine, 317-671-3114, anzeek@iu.edu    (Boston)— The failure to diagnose Alzheimer’s disease, the most common form of dementia in the elderly, at an early stage of molecular pathology is considered a major reason why treatments fail in clinical trials. Previous research to molecularly diagnose Alzheimer’s disease yielded "A/T/N" central biomarkers based on the measurements of proteins, β-amyloid (“A”) and tau (“T”), ...

Comorbidity and disease activity in multiple sclerosis

2024-09-18
About The Study: In this study, a higher burden of comorbidity was associated with worse clinical outcomes in people with multiple sclerosis (MS), although comorbidity could potentially be a partial mediator of other negative prognostic factors. The findings suggest a substantial adverse association of the comorbidities investigated with MS disease activity and that prevention and management of comorbidities should be a pressing concern in clinical practice.  Corresponding Author: To contact the corresponding author, Amber Salter, PhD, email amber.salter@utsouthwestern.edu. To access the embargoed study: Visit our For The Media website at this ...

£18 million for DARE UK to support secure research on sensitive data

2024-09-18
London, United Kingdom, 18 September 2024 – UK Research and Innovation (UKRI), the UK’s largest public funder of research, has confirmed funding for a new phase of the DARE UK (Data and Analytics Research Environments UK) programme with up to £18.2 million made available over 2.5 years. Starting this month, Phase 2 of the DARE UK programme will bring together Trusted Research Environments (TREs) across the UK to test and build new capabilities for a connected national network of secure data ...

New study unveils the impact of mutations in the calcium release channel on muscle diseases

New study unveils the impact of mutations in the calcium release channel on muscle diseases
2024-09-18
The type 1 ryanodine receptor (RyR1) is an important calcium release channel in skeletal muscles essential for muscle contraction. It mediates calcium release from the sarcoplasmic reticulum, a calcium-storing organelle in muscle cells, a process vital for muscle function. Mutations in the RyR1 gene can affect the channel's function in extremely contrasting ways leading to severe muscle diseases such as malignant hyperthermia (MH) and central core disease (CCD). MH is an inherited disease that causes high fever and muscle contractures in response to inhalational anesthetics in patients with gain-of-function RyR1 variants. CCD is one ...

Scientists quantify energetic costs of the migratory lifestyle in a free flying songbird

Scientists quantify energetic costs of the migratory lifestyle in a free flying songbird
2024-09-18
Millions of birds migrate every year to escape winter, but spending time in a warmer climate does not save them energy, according to research by the Max Planck Institute of Animal Behavior (MPI-AB). Using miniaturized loggers implanted in wild blackbirds, scientists recorded detailed measurements of heart rate and body temperature from birds every 30 minutes from fall to the following spring—the first time the physiology of free flying birds has been quantified continuously at this scale over the entire wintering period. The data offer unprecedented insights into the true energetic costs of migrant and resident strategies and reveal a previously unknown mechanism used by migrants to ...

Understanding changes in pre-clinical Alzheimer’s disease

Understanding changes in pre-clinical Alzheimer’s disease
2024-09-18
Amyloid-beta and tau proteins have long been associated with Alzheimer’s disease. The pathological buildup of these proteins leads to cognitive decline in people with the disease. How it does that, though, remains poorly understood.   A new study from the labs of Sylvain Baillet at The Neuro and Sylvia Villeneuve at the Douglas Research Centre provides important insight into how these proteins impact brain activity and possibly contribute to cognitive decline.   The team led by Jonathan Gallego Rudolf, a Ph.D. candidate in Baillet and Villeneuve’s ...

Constriction junction, do you function?

Constriction junction, do you function?
2024-09-18
UPTON, N.Y. — Scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have shown that a type of qubit whose architecture is more amenable to mass production can perform comparably to qubits currently dominating the field. With a series of mathematical analyses, the scientists have provided a roadmap for simpler qubit fabrication that enables robust and reliable manufacturing of these quantum computer building blocks. This research was conducted as part of the Co-design Center for ...

LAST 30 PRESS RELEASES:

NASA’s Parker Solar Probe makes history with closest pass to Sun

Are we ready for the ethical challenges of AI and robots?

Nanotechnology: Light enables an "impossibile" molecular fit

Estimated vaccine effectiveness for pediatric patients with severe influenza

Changes to the US preventive services task force screening guidelines and incidence of breast cancer

Urgent action needed to protect the Parma wallaby

Societal inequality linked to reduced brain health in aging and dementia

Singles differ in personality traits and life satisfaction compared to partnered people

President Biden signs bipartisan HEARTS Act into law

Advanced DNA storage: Cheng Zhang and Long Qian’s team introduce epi-bit method in Nature

New hope for male infertility: PKU researchers discover key mechanism in Klinefelter syndrome

Room-temperature non-volatile optical manipulation of polar order in a charge density wave

Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum

Unlocking the Future of Superconductors in non-van-der Waals 2D Polymers

Starlight to sight: Breakthrough in short-wave infrared detection

Land use changes and China’s carbon sequestration potential

PKU scientists reveals phenological divergence between plants and animals under climate change

Aerobic exercise and weight loss in adults

Persistent short sleep duration from pregnancy to 2 to 7 years after delivery and metabolic health

Kidney function decline after COVID-19 infection

Investigation uncovers poor quality of dental coverage under Medicare Advantage

Cooking sulfur-containing vegetables can promote the formation of trans-fatty acids

How do monkeys recognize snakes so fast?

Revolutionizing stent surgery for cardiovascular diseases with laser patterning technology

Fish-friendly dentistry: New method makes oral research non-lethal

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

[Press-News.org] Penny for your thoughts? Master copper regulator discovery may offer Alzheimer’s clues