PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A new era in materials science: antiferromagnetic quasicrystals unveiled

Researchers have discovered antiferromagnetism in a real icosahedral quasicrystal, reinvigorating the search for antiferromagnetic quasicrystals

A new era in materials science: antiferromagnetic quasicrystals unveiled
2025-04-11
(Press-News.org)

Quasicrystals (QCs) are fascinating solid materials that exhibit an intriguing atomic arrangement. Unlike regular crystals, in which atomic arrangements have an ordered repeating pattern, QCs display long-range atomic order that is not periodic. Due to this ‘quasiperiodic’ nature, QCs have unconventional symmetries that are absent in conventional crystals. Since their Nobel Prize-winning discovery, condensed matter physics researchers have dedicated immense attention towards QCs, attempting to both realize their unique quasiperiodic magnetic order and their possible applications in spintronics and magnetic refrigeration.

Ferromagnetism was recently discovered in the gold-gallium-rare earth (Au-Ga-R) icosahedral QCs (iQCs). Yet scientists were not surprised by this observation because translational periodicity—the repeating arrangement of atoms in a crystal—is not a prerequisite for the emergence of ferromagnetic order. By contrast, the other fundamental type of magnetic order found in nature, antiferromagnetism, is inherently more sensitive to crystal symmetry.

Although theoreticians have long expected the establishment of antiferromagnetism in select QCs, it has yet to be directly observed. Experimentally, most magnetic iQCs exhibit spin-glass-like freezing behavior, with no sign of long-range magnetic order, leading researchers to question whether antiferromagnetism is even compatible with quasiperiodicity—until now.

In a groundbreaking study, a research team has finally discovered antiferromagnetism in a real QC. The team was led by Ryuji Tamura from the Department of Materials Science and Technology at Tokyo University of Science (TUS), along with Takaki Abe, also from TUS, Taku J. Sato from Tohoku University, and Max Avdeev from the Australian Nuclear Science and Technology Organisation and The University of Sydney. Their study was published in the journal Nature Physics on April 11, 2025.

 “As was the case for the first report of antiferromagnetism in a periodic crystal in 1949, we present the first experimental evidence of antiferromagnetism occurring in an iQC,” says Tamura.  

Building upon their recent discovery of ferromagnetism in the Au-Ga-R iQCs, the researchers identified a novel Tsai-type gold-indium-europium (Au-In-Eu) iQC, exhibiting 5-fold, 3-fold, and 2-fold rotational symmetries. The team conducted a series of bulk property measurements and neutron experiments to examine its magnetic nature. Magnetic susceptibility measurements showed a sharp cusp at a temperature of 6.5 Kelvin (K) for both the zero-field cooled and field-cooled conditions, consistent with an antiferromagnetic transition. Specific heat measurements also showed a peak at the same temperature, verifying that the cusp is due to a long-range magnetic order.

To further validate their results, the team performed neutron diffraction measurements of the iQC at temperatures of 10 K and 3 K. They observed additional magnetic Bragg peaks—sharp intensity peaks in the diffraction pattern indicating an ordered magnetic structure—at 3 K, which consistently showed an abrupt increase around the transition temperature of 6.5 K in temperature-dependence measurements, providing the first clear evidence of long-range antiferromagnetic order in a real QC.

As to why the Au-In-Eu iQC hosts an antiferromagnetic phase, the researchers found that, unlike previously studied iQCs, which commonly exhibit a negative Curie-Weiss temperature, this novel iQC has a positive Curie-Weiss temperature. Interestingly, they also discovered that with a slight increase in the electron-per-atom ratio through elemental substitution, the antiferromagnetic phase disappears and the iQC shows spin-glass behavior, much like previous iQCs. This suggests that iQCs with a positive Curie-Weiss temperature favor antiferromagnetic order establishment, opening new avenues for future studies to develop novel antiferromagnetic QCs by controlling the electron-per-atom ratio.

“This discovery finally resolves the longstanding issue of whether antiferromagnetic order is possible in real QCs,” adds Tamura. “Antiferromagnetic QCs could enable unprecedented functions, such as ultrasoft magnetic responses, and will bring about a revolution in spintronics and magnetic refrigeration in the future.”

The researchers’ discovery aligns with the United Nations’ sustainable development goals (SDGs)—affordable and clean energy (SDG 7), industry, innovation, and infrastructure (SDG 9)—by building energy-efficient electronics. Solving a decades-long mystery, this discovery not only reinvigorates the search for unexplored antiferromagnetic QCs but also opens a new research field of quasiperiodic antiferromagnets, with implications extending far beyond spintronics.

 

***

 

Reference                       

DOI: 10.1038/s41567-025-02858-0

 

Authors: R. Tamura1, T. Abe1, S. Yoshida1, Y. Shimozaki1, S. Suzuki2, A. Ishikawa3, F. Labib3, M. Avdeev4,5, K. Kinjo6, K. Nawa6, T. J. Sato6

 

Affiliations:    

1Department of Materials Science and Technology, Tokyo University of Science

2Department of Physical Science, Aoyama Gakuin University

3Research Institute for Science and Technology, Tokyo University of Science

4Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation

5School of Chemistry, The University of Sydney

6Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

 

Funding information
This work was supported by Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research (Grants No. JP19H05817, JP19H05818, JP21H01044, JP22H00101, 23KK0051) and Japan Science and Technology agency, CREST, Japan, through a grant No. JPMJCR22O3. Neutron scattering experiments were performed using the ECHIDNA diffractometer installed at the OPAL reactor of Australian Nuclear Science and Technology Organisation, as well as the ISSP-GPTAS triple-axis spectrometer installed at the JRR-3 reactor of Japan Atomic Energy Agency. The experiment at JRR-3 was supported by the General User Program for Neutron Scattering Experiments, Institute for Solid State Physics, University of Tokyo

END


[Attachments] See images for this press release:
A new era in materials science: antiferromagnetic quasicrystals unveiled

ELSE PRESS RELEASES FROM THIS DATE:

From boring to bursting: a giant black hole awakens

From boring to bursting: a giant black hole awakens
2025-04-11
Although we know that supermassive black holes (millions of times the mass of our Sun) lurk at the centre of most galaxies, their very nature makes them difficult to spot and study. In contrast to the popular idea of black holes constantly ‘gobbling up’ matter, these gravitational monsters can spend long periods of time in a dormant, inactive phase. This was true of the black hole at the heart of SDSS1335+0728, a distant and unremarkable galaxy 300 million light-years away in the constellation of Virgo. After being inactive for decades, it suddenly lit up and recently began producing unprecedented flashes of X-ray light. The first signs ...

Illuminating the twist: light-driven inversion of supramolecular chirality

Illuminating the twist: light-driven inversion of supramolecular chirality
2025-04-11
Self-assembly or self-organization in molecular science refers to the phenomena where molecules spontaneously gather and form ordered structures, a unique property of materials used to develop optical and electronic materials. In a step towards fine-tuning this property, researchers from Japan successfully elucidated a technique where a small amount of residual aggregates drastically altered the self-assembly process of photo-responsive molecules. The research team was led by Professor Shiki Yagai from the Graduate School of Engineering, Chiba University, including Assistant Professor ...

Engineered bacteria emit signals that can be spotted from a distance

2025-04-11
CAMBRIDGE, MA -- Bacteria can be engineered to sense a variety of molecules, such as pollutants or soil nutrients. In most cases, however, these signals can only be detected by looking at the cells under a microscope or similarly sensitive lab equipment, making them impractical for large-scale use. Using a new method that triggers cells to produce molecules that generate unique combinations of color, MIT engineers have shown that they can read out these bacterial signals from as far as 90 meters away. Their work could lead to the development of bacterial sensors for agricultural and other applications, which could be monitored by drones or ...

Scalable graphene membranes: a leap for carbon capture

Scalable graphene membranes: a leap for carbon capture
2025-04-11
Capturing carbon dioxide (CO₂) from industrial emissions is crucial in the fight against climate change. But current methods, like chemical absorption, are expensive and energy-intensive. Scientists have long eyed graphene—an atom-thin, ultra-strong material—as a promising alternative for gas separation, but making large-area, efficient graphene membranes has been a challenge. Now, a team at EPFL, led by Professor Kumar Agrawal, has developed a scalable technique to create porous graphene membranes ...

Early detection of Parkinson’s with novel RNA-based blood test

2025-04-11
Researchers have developed a simple and cost-effective blood test capable of detecting Parkinson’s disease long before symptoms emerge, comparing the current state of diagnosing neurodegenerative diseases to the fight against cancer 50 years ago—when most cases were identified too late for effective treatment. The test quantifies specific RNA fragments in the blood, focusing on a repetitive RNA sequence that accumulates in Parkinson’s patients and a parallel decline in mitochondrial RNA, which deteriorates as the disease progresses. By measuring the ratio between these biomarkers, the test offers a highly accurate, non-invasive, rapid  and affordable diagnostic tool, ...

“Internet of nature” helps researchers explore the web of life

2025-04-11
A novel paper led by Dr Ulrich Brose of the German Centre for Integrative Biodiversity Research (iDiv) and the Friedrich Schiller University Jena is widening understanding of how species interact within ecosystems via the so-called “Internet of Nature.” Published in Nature Ecology and Evolution, the paper reveals that species not only exchange matter and energy but also share vital information that influences behaviour, interactions, and ecosystem dynamics – revealing previously hidden characteristics of natural ecosystems. Traditionally, ecological studies have ...

Police officers face twice the risk of traumatic brain injuries and PTSD, survey finds

2025-04-11
Police officers are more than twice as likely to have traumatic brain injuries compared to the general population. Officers who incur these injuries while on duty face more than double the risk of developing complex post-traumatic stress disorder (PTSD). That’s according to a new survey-based study from the University of Exeter, published in The Journal of Head Trauma Rehabilitation, which found a connection between traumatic brain injuries and PTSD in police officers. Authors say the findings ...

Patrick Tan appointed as Duke-NUS Dean to lead next era of medical innovation and education

Patrick Tan appointed as Duke-NUS Dean to lead next era of medical innovation and education
2025-04-11
SINGAPORE, 11 APRIL 2025—Duke-NUS Medical School has appointed Professor Patrick Tan as its next and fourth Dean, effective 1 January 2026, marking a new chapter for the School as it builds on its legacy of medical education, research and innovation. Prof Tan will serve as Dean-designate from 1 July 2025, succeeding Professor Thomas Coffman, the School’s longest-serving Dean since 2015. This leadership transition coincides with the School’s 20th anniversary, underscoring Duke-NUS’ commitment to advancing ...

Development of a novel modified selective medium cefixime–tellurite-phosphate-xylose-rhamnose MacConkey agar for isolation of Escherichia albertii and its evaluation with food samples

2025-04-11
Since cefixime and tellurite are known to inhibit most bacteria belonging to Enterobacterales, we found that addition of tellurite inhibited E. albertii growth in Luria Bertani broth but not in tryptic soy broth (TSB), and addition of phosphate and soy peptone enhanced E. albertii growth in TSB in presence of tellurite. Subsequently, to find the positive factor present in TSB, E. albertii growth was examined in tryptone, soy peptone, glucose, or phosphate deficient tryptic soy agar plates. Phosphate, soy peptone, and/or ...

KIST develops full-color-emitting upconversion nanoparticle technology for color displays with ultra-high color reproducibility

KIST develops full-color-emitting upconversion nanoparticle technology for color displays with ultra-high color reproducibility
2025-04-11
Dr. Ho Seong Jang and colleagues at the Extreme Materials Research Center at the Korea Institute of Science and Technology (KIST) have developed an upconversion nanoparticle technology that introduces a core@multi-shell nanostructure, a multilayer structure in which multiple layers of shells surround a central core particle, and enables high color purity RGB light emission from a single nanoparticle by adjusting the infrared wavelength. Luminescent materials are materials that light up on their own and are used in a variety of display devices, including TVs, tablets, monitors, and smartphones, to allow us to view a variety of images ...

LAST 30 PRESS RELEASES:

Making lighter work of calculating fluid and heat flow

Normalizing blood sugar can halve heart attack risk

Lowering blood sugar cuts heart attack risk in people with prediabetes

Study links genetic variants to risk of blinding eye disease in premature infants

Non-opioid ‘pain sponge’ therapy halts cartilage degeneration and relieves chronic pain

AI can pick up cultural values by mimicking how kids learn

China’s ecological redlines offer fast track to 30 x 30 global conservation goal

Invisible indoor threats: emerging household contaminants and their growing risks to human health

Adding antibody treatment to chemo boosts outcomes for children with rare cancer

Germline pathogenic variants among women without a history of breast cancer

Tanning beds triple melanoma risk, potentially causing broad DNA damage

Unique bond identified as key to viral infection speed

Indoor tanning makes youthful skin much older on a genetic level

Mouse model sheds new light on the causes and potential solutions to human GI problems linked to muscular dystrophy

The Journal of Nuclear Medicine ahead-of-print tip sheet: December 12, 2025

Smarter tools for peering into the microscopic world

Applications open for funding to conduct research in the Kinsey Institute archives

Global measure underestimates the severity of food insecurity

Child survivors of critical illness are missing out on timely follow up care

Risk-based vs annual breast cancer screening / the WISDOM randomized clinical trial

University of Toronto launches Electric Vehicle Innovation Ontario to accelerate advanced EV technologies and build Canada’s innovation advantage

Early relapse predicts poor outcomes in aggressive blood cancer

American College of Lifestyle Medicine applauds two CMS models aligned with lifestyle medicine practice and reimbursement

Clinical trial finds cannabis use not a barrier to quitting nicotine vaping

Supplemental nutrition assistance program policies and food insecurity

Switching immune cells to “night mode” could limit damage after a heart attack, study suggests

URI-based Global RIghts Project report spotlights continued troubling trends in worldwide inhumane treatment

Neutrophils are less aggressive at night, explaining why nighttime heart attacks cause less damage than daytime events

Menopausal hormone therapy may not pose breast cancer risk for women with BRCA mutations

Mobile health tool may improve quality of life for adolescent and young adult breast cancer survivors

[Press-News.org] A new era in materials science: antiferromagnetic quasicrystals unveiled
Researchers have discovered antiferromagnetism in a real icosahedral quasicrystal, reinvigorating the search for antiferromagnetic quasicrystals