(Press-News.org) STANFORD, Calif. — Stem cells are special. Nestled in muscle and skin, organ and bone, they bide their time over years or decades until called to replace damaged or lost tissue. One secret to their longevity is an enzyme called telomerase, which stills the relentless ticking of the molecular clock that limits the life span of other cells.
This cellular fountain of youth prevents the progressive shortening of the tips of our chromosomes that occurs with each cell division. But the presence of telomerase can be a double-edged sword: The same activity that ensures long life for stem cells can also keep a cancer cell dividing long after its aging neighbors have thrown in the towel. Conversely, a malfunction can prevent stem cells from doing their job and lead to devastating diseases.
Now, for the first time, researchers at the Stanford University School of Medicine have identified how telomerase is recruited to chromosome ends — and figured out a way to block it.
"If telomerase is unable to maintain the ends of the chromosomes, cells will stop multiplying," said professor of medicine Steven Artandi, MD, PhD. "This would be advantageous in cancer cells, but in normal stem cells it can cause severe dysfunction and lead to diseases such as pulmonary fibrosis, aplastic anemia and a genetic condition called dyskeratosis congenita. We want to understand how telomerase works, and to develop therapies for cancer and these other diseases."
Artandi is the senior author of the research, which will be published Aug. 3 in Cell. He is also a member of the Stanford Cancer Institute. Graduate student Franklin Zhong is the first author of the study.
Telomerase is normally expressed in adult stem cells and immune cells, as well as in cells of the developing embryo. In these cells, the enzyme caps off the ends of newly replicated chromosomes, allowing unfettered cell division. Without telomerase, cells stop dividing or die when the ends — called telomeres — fall below a minimum length. Unfortunately, the enzyme is also active in nearly all cancer cells.
Earlier research in Artandi's lab identified a protein called TCAB1 that brings the telomerase complex (actually a large clump of many proteins) to a processing area in the cell's nucleus called a Cajal body. But no one knew how the complex was then ferried to the ends of telomeres, and research was stymied by the complex's large size, multiple components and relative scarcity.
"This problem has been really intractable," said Artandi. "The enzyme is extremely hard to study. But we've now found that telomerase is recruited to the telomeres through an interaction with a protein called TPP1 that coats the ends of chromosomes." What's more, the researchers have identified the exact region of TPP1 to which telomerase binds — a section called an OB-fold.
"When we mutated this site in TPP1," said Artandi, "we blocked the interaction between the two proteins and prevented telomerase from going to the telomeres. And when we interfered with this interaction in human cancer cells, the telomeres began to shorten." The researchers are now assessing whether the life span of the cancer cells, and their ability to divide unchecked, will also be affected by the treatment.
To confirm their finding, Artandi and his colleagues used cells from patients with pulmonary fibrosis — a debilitating scarring or thickening of lung tissue associated with telomerase mutations. The disease had been troubling to researchers and clinicians, however, because the patients' mutated telomerase seemed to be fully active when tested in the laboratory. Zhong and Artandi found that the disease-associated mutations occurred in the portion of telomerase that interacted with TPP1, and interfered with their binding. As a result the enzyme, although active, couldn't get to where it was needed.
"It was impossible to even begin to understand this mechanism before we knew how these two molecules interact," said Artandi. "But now that we're getting a handle on this, we can begin to think about developing inhibitors — maybe in the form of peptides or small molecules — that can mimic this disruption. This could be very valuable in cancer therapies."
###In addition to Zhong and Artandi, other Stanford researchers involved in the work include postdoctoral scholars Luis Batista, PhD, and Adam Freund, PhD; graduate student Matthew Pech; and former graduate student Andrew Venteicher, PhD.
The research was supported by Singapore's Agency for Science, Technology and Research, the California Institute for Regenerative Medicine, the National Science Foundation, the Leukemia and Lymphoma Society, the Glenn Foundation for Medical Research and the National Institutes of Health.
Information about Stanford's Department of Medicine, which also supported the work, is available at http://medicine.stanford.edu.
The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.
PRINT MEDIA CONTACT: Krista Conger at (650) 725-5371 (kristac@stanford.edu)
BROADCAST MEDIA CONTACT: Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu)
BOSTON (8/2/12) -- Through the assembly of genetic components into "circuits" that perform logical operations in living cells, synthetic biologists aim to artificially empower cells to solve critical problems in medicine, energy and the environment. To succeed, however, they'll need far more reliable genetic components than the small number of "off-the-shelf" bacterial parts now available.
Now a new method developed by Boston University biomedical engineers Ahmad S. Khalil and James J. Collins -- and collaborators at Harvard Medical School, Massachusetts General Hospital ...
Changes in seismic velocity--changes in the speeds at which seismic waves move through the Earth's crust--have been identified during and after many earthquakes. But do these changes also happen before an earthquake, and could they be measured as a way to predict a quake on the way? The search for a clear and measurable pre-quake signal has been called "the holy grail of seismology."
In a new analysis of the 2004 magnitude 6.0 Parkfield earthquake in California, David Schaff suggests some limits on how changes measured by ambient seismic noise could be used as a pre-earthquake ...
The press release and paper noted below, publishing in the Bulletin of the Seismological Society of America, is strictly under embargo until 12:00 Noon Eastern Time US on August 2, 2012.
The past decade has been plagued with what seems to be a cluster of large earthquakes, with massive quakes striking Sumatra, Chile, Haiti and Japan since 2004. Some researchers have suggested that this cluster has occurred because the earthquakes may be "communicating" across large distances, possibly triggering each other. But a new analysis by Tom Parsons and Eric Geist of the US Geological ...
CAMBRIDGE, Mass. (August 2, 2012) – Whitehead Institute researchers have found that increased expression of a specific set of genes is strongly associated with metastasis and death in patients with breast, colon, and lung cancers. Not only could this finding help scientists identify a gene profile predictive of patient outcomes and response to treatment, it could also guide the development of therapeutics to target multiple cancer types.
The genes identified are activated by a transcription factor called heat-shock factor 1 (HSF1) as part of a transcriptional program ...
This press release is available in French.
Researchers at the University of Montreal and its affiliated CHU Sainte-Justine and CHUM hospitals have linked some cases of Essential Tremor (ET) to a specific genetic problem. ET is the most common movement disorder, becoming increasingly frequent with increasing age, which is characterized by an involuntary shaking movement (tremor) that occurs with motion, particularly when doing precise fine movement. The researchers will be publishing their findings tomorrow in The American Journal of Human Genetics.
Exactly why this ...
CAMBRIDGE, Mass. (August 2, 2012) – Planarian flatworms have come under intense study for their renowned ability to regenerate any missing body part, even as adults. But now they may take on a starring role as a model system for studying eye development and eye diseases in vertebrates, including humans.
This expansion of the planarian job description comes courtesy of Whitehead Institute researchers, who this week are publishing in Cell Reports an exhaustive catalog of genes active in the planarian eye.
"It's exciting to get this complete list of genes in one fell swoop," ...
VIDEO:
UCLA stem cell researchers have found for the first time a surprising and unexpected plasticity in the embryonic endothelium, the place where blood stem cells are made in early development....
Click here for more information.
UCLA stem cell researchers have found for the first time a surprising and unexpected plasticity in the embryonic endothelium, the place where blood stem cells are made in early development.
Scientists found that the lack of one transcription ...
Now's the time to prepare for the heat waves, heavy rains and droughts that climate change will bring, says Stanford's Chris Field, a noted climate researcher.
Speaking Wednesday at a contentious U.S. Senate hearing on climate change, Stanford's Chris Field, an expert on climate change, offered a stark yet hopeful analogy.
Just as speeding increases the chance of having a car accident, climate change intensifies the risk of heat waves, droughts and heavy precipitation, said Field, a senior fellow at the Stanford Woods Institute for the Environment. He testified before ...
TEMPE, Ariz. – When ordering seafood, the options are many and so are some of the things you might consider in what you order. Is your fish healthy? Is it safe? Is it endangered? While there are many services and rankings offered to help you decide – there's even an iPhone app – a group of researchers have found a simple rule of thumb applies.
"If the fish is sustainable, then it is likely to be healthy to eat too," said Leah Gerber, an associate professor and senior sustainability scientist at Arizona State University.
Gerber and colleagues ran an analysis of existing ...
Imagine the following situation. The 100 metres finals in the London Olympic Games. The Jamaican Usain Bolt wins. Up to this point everything sounds normal except for the fact that he would break his own record again with a time of 9.48 seconds. According to the New Zealand researchers, this would be his record if there were a 2 metre per second tailwind (maximum allowable wind) and the race took place at an altitude of 999 metres. This record will of course have to wait because London lies just 24 metres above sea level. Scientists are sure though that environment conditions ...