PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Synchrotron infrared unveils a mysterious microbial community

Berkeley Lab scientists join an international collaboration to understand how archaea and bacteria work together deep in a cold sulfur spring

Synchrotron infrared unveils a mysterious microbial community
2013-01-22
(Press-News.org) In the fall of 2010, Hoi-Ying Holman of the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) was approached by an international team researching a mysterious microbial community discovered deep in cold sulfur springs in southern Germany.

"They told me what they were doing and said, 'We know what you contributed to the oil-spill research,'" recalls Holman, who heads the Chemical Ecology group in Berkeley Lab's Earth Sciences Division. "They wondered if I could help them determine the biochemistry of their microbe samples."

Holman had co-authored a report in Science about bacteria in the Gulf of Mexico that thrived on the Deepwater Horizon oil plume. Using infrared spectromicroscopy at the Berkeley Synchrotron Infrared Structural Biology (BSISB) facility, which she directs at the Advanced Light Source (ALS), Holman helped determine how the novel bug obtained energy by eating the spilled crude. No stranger to subsurface bioscience, Holman would soon add a new actor to her cast of remarkable microbes.

Not extreme, but weird anyway

The name Archaea means "ancient things," but Archaea were recognized as a distinct domain of life less than forty years ago. First thought to be exclusively extremophiles – lovers of boiling hot springs, deep-sea black smokers, acid mine runoff, and other inhospitable environments – more and more archaea are found thriving in moderate and cold environments, almost always as minority members of much larger microbial communities.

A unique exception to this pattern was discovered less than 10 years ago in the Sippenauer Moor in Germany. In microbial mats in this cold sulfur spring's outflow, the SM1 Euryarchaeon lives in roughly equal abundance with bacteria in a community that forms symbiotic "strings of pearls": the archaea fill the "pearls" and filamentous bacteria cover the pearl surfaces and form strings between them. The two kinds of microbes were assumed to be syntrophic – dependent on each other for nourishment – but the biochemical details were a mystery.

Christine Moissl-Eichinger of the University of Regensburg was among the SM1 Euryarchaeon's discoverers. Before long what she calls "another amazing lifestyle" of the new archaeon emerged; biofilms that grew deep below the surface of another cold sulfur spring, the nearby Muehlbacher Schwefelquelle. Moissl-Eichinger and her team collected samples of the slime-like biofilm – which first seemed to be pure SM1 – on net traps underwater.

To augment their already extensive research, Moissl-Eichinger and Alexander Probst of her staff brought the Regensburg samples to Berkeley Lab, initially attracted by the PhyloChip, a DNA microarray invented by Berkeley Lab's Gary Andersen and Todd DeSantis and their colleagues. Because the PhyloChip probes for the 16S rRNA gene, found in all Bacteria and Archaea, it can quickly and accurately sort through all known species in a sample – including those, like SM1 and many other microorganisms, that can't be grown in culture.

Probst and DeSantis, both now with Second Genome, Inc., and Andersen were joined by Kasthuri Venkateswaran of the Jet Propulsion Laboratory, a member of NASA's Biotechnology and Planetary Protection Group. Probst wanted to know who was living where in the subsurface sulfur-spring samples; Venkateswaran's interest is understanding the role of Archaea in space and analogous sites. Although SM1 was by far the dominant species in the subsurface community, they found that small amounts of other archaea were present as well – and about five percent of the community consisted of bacteria.

Bring on the synchrotron

Led by Andersen, the PhyloChip's inventors had contributed to the oil-spill research, and their previous association with Holman brought her and her BSISB colleagues aboard the SM1 research team.

"Lots of biochemical techniques can tell you what's in a sample – lipids and carbohydrates, for example – but just because they're there doesn't mean they interact," says Holman's colleague Giovanni Birarda, a member of the BSISB staff. "Synchrotron radiation–based Fourier-transform infrared spectromicroscopy – SR-FTIR – takes images and spectra of the same sample, so you can map the chemical relationships by combining the images with spectra that identify where the archaea and bacteria are."

Holman says, "The main difference is in their membrane lipids. Bacterial membrane lipids consist of fatty acids with long alkylic chains" – functional groups of singly bonded carbon and hydrogen atoms – "which have only one to two terminal methyl groups," groups with one carbon and three hydrogen. "By contrast, archaeal membrane lipids generally consist of branched and saturated isoprenes" – a more complex common hydrocarbon – "and are relatively less alkylic but have more methyl groups."

By revealing the bright spectral signals of alkylic and methyl groups, together with sulfur functional groups, synchrotron FTIR unambiguously identified the sulfate-reducing metabolic activity of the bacteria within the SM1 samples. The archaeal cells themselves showed no such activity, leading the researchers to posit a thriving mutual metabolism of the archaea and bacteria.

In many cases, such syntrophy requires close physical association. Covering the surface of each SM1 cell the researchers found spines made of three protein strands, equipped with terminal hooks where the strands divided. Moissl-Eichinger named them hami, Latin for barbs or hooks. These "nano-grappling hooks" apparently hold the microbial partners together, working in synchronization. The major hami protein is unlike any known proteinaceous archaeal or bacterial filaments.

How SM1 Euryarchaea interact with their bacterial partners may be a model for understanding other syntrophic relations essential to the carbon and sulfur cycles on which Earth's life depends. So far found in just two sites in Germany, the species is the only example yet of an archaeon that dominates a biological ecosystem – but related species have been found in sulfur springs as far afield as Turkey and may be widespread.

DOE's Office of Science supported building and equipping the BSISB and also supports the ALS. For additional information, see below.

INFORMATION:

Synchrotron infrared biology

Microbial communities are essential to cleaning up subsurface pollution – including residues of metals and radionuclides at sites once involved in nuclear weapons research and assembly. Susan Hubbard heads the Earth Sciences Division's (ESD's) Environmental Remediation and Water Resources Program, which includes several projects that take advantage of synchrotron radiation Fourier-transform infrared spectromicroscopy – SR-FTIR for short – to understand biochemical changes in living microorganisms during the oxidation or reduction of uranium and chromium wastes.

SR-FTIR doesn't require intrusive cell labeling, it can readily and nondestructively distinguish archaea from bacteria and assess their biochemistry, and it can follow changes in chemical composition of different members of the same microbial community over time. A mainstay of the Berkeley Synchrotron Infrared Structural Biology program (BSISB), the technology is increasingly recognized as an indispensable tool for microbiological investigation.

Microbial ecologist Eoin Brodie of ESD uses SR FTIR to understand how communities of soil microbes change as the climate changes, and how the composition of wood materials changes as they pass through a beetle's gut. Meanwhile a team from halfway around the world is investigating how climate change affects crop growth in Australia, examining the "rizosphere," the subsurface realm where symbiotic microorganisms extend from plant roots to collect water and nutrients such as nitrogen.

"At the BSISB we examine living root hairs in our microfluidic chamber, with just enough moisture to sustain life but not enough to absorb the infrared beam," says BSISB director Hoi-Ying Holman. "We can see how root growth is affected by introducing different microorganisms and watching the microbes and root hairs interact in real time."

Examining life's changing chemistry in real time isn't confined to microorganisms. One example is wound healing, a research project by a team from the University of California at Davis and the University of Aberdeen in Scotland. Living human cells are imaged under the infrared beam to see what molecular changes are triggered in response to electric fields.

BSISB's beamline 5.4 is unique at the Advanced Light Source. Unlike x-rays, long-wavelength infrared reflects from ordinary mirrors and can be steered around sharp corners. So instead of the crowded ALS floor, where x-ray beamlines jostle for space, BSISB can spread out on its concrete-block roof. Extra room on the roof means live samples can be prepared in situ and studied with an array of imaging and spectroscopic techniques, an ideal facility for life sciences, environmental sciences, materials sciences, and a range of applications limited only by the users' imaginations.

"Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm," by Alexander J. Probst, Hoi-Ying N. Holman, Todd Z. DeSantis, Gary L. Andersen, Giovanni Birarda, Hans A. Bechtel, Yvette M. Piceno, Maria Sonnleitner, Kasthuri Venkateswaran, and Christine Moissl-Eichinger, appears in advanced online publication of The ISME Journal, 22 November 2012, and is available at http://www.nature.com/ismej/journal/vaop/ncurrent/abs/ismej2012133a.html.

The Science article on novel hydrocarbon-degrading bacteria associated with the Deepwater Horizon oil spill may be found at http://www.sciencemag.org/content/330/6001/204.abstract.

More about the Berkeley Synchrotron Infrared Structural Biology Program is at http://infrared.als.lbl.gov/content/structuralbiology/overview.

For Susan Hubbard's research, including bioremediation of uranium-contamined sites, see http://esd.lbl.gov/about/staff/susanhubbard/ and http://esd.lbl.gov/research/programs/erwr/

Eoin Brodie's microbial research is described at http://envmicro.wordpress.com/

More about how climate change may affect microbial communities important to crop growth in Australia is at http://www.csiro.au/en/Organisation-Structure/Divisions/Plant-Industry/michellewatt.aspx

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

[Attachments] See images for this press release:
Synchrotron infrared unveils a mysterious microbial community

ELSE PRESS RELEASES FROM THIS DATE:

Immune cells engineered in lab to resist HIV infection, Stanford study shows

2013-01-22
STANFORD, Calif. — Researchers at the Stanford University School of Medicine have found a novel way to engineer key cells of the immune system so they remain resistant to infection with HIV, the virus that causes AIDS. A new study describes the use of a kind of molecular scissors to cut and paste a series of HIV-resistant genes into T cells, specialized immune cells targeted by the AIDS virus. The genome editing was made in a gene that the virus uses to gain entry into the cell. By inactivating a receptor gene and inserting additional anti-HIV genes, the virus was blocked ...

Sex of early birds suggests dinosaur reproductive style

2013-01-22
In a paper published in Nature Communications on January 22, 2013, a team of paleontologists including Dr. Luis Chiappe, Director of the Natural History Museum of Los Angeles County's (NHM) Dinosaur Institute, has discovered a way to determine the sex of an avian dinosaur species. Confuciusornis sanctus, a 125-million-year-old Mesozoic bird, had remarkable differences in plumage — some had long, almost body length ornamental tail feathers, others had none — features that have been interpreted as the earliest example of avian courtship. However, the idea that male Confuciusornis ...

The skin aging regulator

The skin aging regulator
2013-01-22
These mechanisms, described in vivo in mice, engage molecule CD98hc, which is involved in epidermis renewal and could be an indicator of the skin's capacity for regeneration. The results were published in the Journal of Experimental Medicine review. The epidermis, the surface layer of the skin, is mainly composed of keratinocytes cells, which, in humans, are renewed continuously over a 21-day cycle. These cells are located on a membrane made up of components from the extracellular matrix that provides the junction with the dermis, the deep layer of the skin (see diagram). ...

Harmful effects of bisphenol A proved experimentally

2013-01-22
Bisphenol A (BPA) is a chemical compound that is included in the composition of plastics and resins. It is used, for example, in the manufacture of food containers such as bottles and babies' feeding bottles. It is also found in the protective films used inside food and drink cans and on till receipts where it used as a discloser. Significant levels of BPA have also been found in human blood, urine, amniotic fluid and placentas. Recent studies have shown that this industrial component has harmful effects on reproductive ability, development and the metabolism of laboratory ...

Analysis of fracking wastewater yields some surprises

2013-01-22
DURHAM, N.C. -- Hydraulically fractured natural gas wells are producing less wastewater per unit of gas recovered than conventional wells would. But the scale of fracking operations in the Marcellus shale region is so vast that the wastewater it produces threatens to overwhelm the region's wastewater disposal capacity, according to new analysis by researchers at Duke and Kent State universities. Hydraulically fractured natural gas wells in the Marcellus shale region of Pennsylvania produce only about 35 percent as much wastewater per unit of gas recovered as conventional ...

EARTH: The dangers of solar storms

2013-01-22
Alexandria, VA – Throughout history, humanity has steadily increased its dependence upon technology. Although technology has vastly improved the quality of life for billions of people, it has also opened us up to new risks and vulnerabilities. Terrorism and natural disasters might be at the forefront of the minds of policymakers and the U.S. population, but a significant threat lurks over our heads: the sun. A massive solar storm, the size last seen a century and a half ago, could easily leave hundreds of millions of people in the dark for days, weeks or even months. The ...

Unprecedented glacier melting in the Andes blamed on climate change

2013-01-22
Glaciers in the tropical Andes have been retreating at increasing rate since the 1970s, scientists write in the most comprehensive review to date of Andean glacier observations. The researchers blame the melting on rising temperatures as the region has warmed about 0.7°C over the past 50 years (1950-1994). This unprecedented retreat could affect water supply to Andean populations in the near future. These conclusions are published today in The Cryosphere, an Open Access journal of the European Geosciences Union (EGU). The international team of scientists – uniting researchers ...

How can evolutionary biology explain why we get cancer?

2013-01-22
Over 500 billion cells in our bodies will be replaced daily, yet natural selection has enabled us to develop defenses against the cellular mutations which could cause cancer. It is this relationship between evolution and the body's fight against cancer which is explored in a new special issue of the Open Access journal Evolutionary Applications. "Cancer is far from a single well-defined disease which we can identify and eradicate," said Dr Athena Aktipis, Director, Human and Social Evolution, Center for Evolution and Cancer at the University of California, San Francisco. ...

Children with egg allergies can safely receive flu vaccine, U-M study says

2013-01-22
Ann Arbor, Mich. — Egg allergic children, including those with a history of anaphylaxis to egg, can safely receive a single dose of the seasonal influenza vaccine, according to a new study from the University of Michigan. Historically, the CDC recommended that the seasonal influenza vaccine not be administered to egg allergic children. Recent research conducted at the University of Michigan, and elsewhere, helped modify this recommendation in 2011 so that caution was warranted for only those with severe egg allergy. The new study, published in the Annals of Allergy, ...

Hypertension during pregnancy increases risk of end-stage renal disease

2013-01-22
Women with hypertensive disorders in pregnancy are at higher risk of chronic kidney disease and end-stage renal disease compared with women without the disorders, according to a study in CMAJ (Canadian Medical Association Journal). "We found that women with hypertensive disorders during pregnancy were at higher risk of end-stage renal disease than women without complicated pregnancies," writes Dr. I-Kuan Wang, Division of Nephrology, China Medical University Hospital, Taichung, Taiwan, with coauthors. Hypertensive disorders such as gestational hypertension and preeclampsia ...

LAST 30 PRESS RELEASES:

Popular prescription weight loss drugs linked to uncommon blinding condition

COVID-19 vaccination and parent-reported symptomatic child asthma prevalence

Experimental drug supercharges medicine that reverses opioid overdose

Risk of nonarteritic anterior ischemic optic neuropathy in patients prescribed semaglutide

Environmental toxicant exposure and depressive symptoms

Web-based cognitive behavioral treatment for bulimia nervosa

States with highest COVID-19 vaccination rates showed steepest decline in pediatric asthma prevalence

Scientists unravel life-saving effect of dexamethasone in COVID-19

Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials

Mobile phone data helps track pathogen spread and evolution of superbugs

Discovery of cellular mechanism to maintain brain’s energy could benefit late-life brain health

Extinct humans survived on the Tibetan plateau for 160,000 years

PolyU study reveals the mechanism of bio-inspired control of liquid flow, enlightening breakthroughs in fluid dynamics and nature-inspired materials technologies

Early-onset El Niño means warmer winters in East Asia, and vice versa

How to avoid wasting huge amounts of energy

Bowel cancer turns genetic switches on and off to outwit the immune system

Shark hatching success drops from 82% to 11% in climate change scenario

Meet the team 3D modelling France’s natural history collections

Artificial light is a deadly siren song for young fish

Social media is a likely cause of ‘confusion’ in modern mate selection

Exploring bird breeding behaviour and microbiomes in the radioactive Chornobyl Exclusion Zone

Discovering new anti-aging secrets from the world’s longest-living vertebrate

Pregnant fish can also get “baby brain”, but not the way that mammals do

Pasteurization inactivates highly infectious avian flu in milk

KIER develops 'viologen redox flow battery' to replace vanadium’

Chemists synthesize an improved building block for medicines

A genetic algorithm for phononic crystals

Machine learning could aid efforts to answer long-standing astrophysical questions

Research spotlight: Uncovering how a cellular miscommunication leads to cognitive impairment in female patients with Alzheimer’s disease

AI model to improve patient response to cancer therapy

[Press-News.org] Synchrotron infrared unveils a mysterious microbial community
Berkeley Lab scientists join an international collaboration to understand how archaea and bacteria work together deep in a cold sulfur spring