(Press-News.org) Physicists have reproduced a pattern resembling the cosmic microwave background radiation in a laboratory simulation of the big bang, using ultracold cesium atoms in a vacuum chamber at the University of Chicago.
"This is the first time an experiment like this has simulated the evolution of structure in the early universe," said Cheng Chin, professor in physics. Chin and his associates reported their feat in the Aug. 1 edition of Science Express, and it will appear soon in the print edition of Science.
Chin pursued the project with lead author Chen-Lung Hung, PhD'11, now at the California Institute of Technology, and Victor Gurarie of the University of Colorado, Boulder. Their goal was to harness ultracold atoms for simulations of the big bang to better understand how structure evolved in the infant universe.
The cosmic microwave background is the echo of the big bang. Extensive measurements of the CMB have come from the orbiting Cosmic Background Explorer in the 1990s, and later by the Wilkinson Microwave Anisotropy Probe and various ground-based observatories, including the UChicago-led South Pole Telescope collaboration. These tools have provided cosmologists with a snapshot of how the universe appeared approximately 380,000 years following the Big Bang, which marked the beginning of the universe.
It turns out that under certain conditions, a cloud of atoms chilled to a billionth of a degree above absolute zero (-459.67 degrees Fahrenheit) in a vacuum chamber displays phenomena similar to those that unfolded following the big bang, Hung said.
"At this ultracold temperature, atoms get excited collectively. They act as if they are sound waves in air," he said. The dense package of matter and radiation that existed in the very early universe generated similar sound-wave excitations, as revealed by COBE, WMAP and the other experiments.
The synchronized generation of sound waves correlates with cosmologists' speculations about inflation in the early universe. "Inflation set out the initial conditions for the early universe to create similar sound waves in the cosmic fluid formed by matter and radiation," Hung said.
Big bang's rippling echo
The sudden expansion of the universe during its inflationary period created ripples in space-time in the echo of the big bang. One can think of the big bang, in oversimplified terms, as an explosion that generated sound, Chin said. The sound waves began interfering with each other, creating complicated patterns. "That's the origin of complexity we see in the universe," he said.
These excitations are called Sakharov acoustic oscillations, named for Russian physicist Andrei Sakharov, who described the phenomenon in the 1960s. To produce Sakharov oscillations, Chin's team chilled a flat, smooth cloud of 10,000 or so cesium atoms to a billionth of a degree above absolute zero, creating an exotic state of matter known as a two-dimensional atomic superfluid.
Then they initiated a quenching process that controlled the strength of the interaction between the atoms of the cloud. They found that by suddenly making the interactions weaker or stronger, they could generate Sakharov oscillations.
The universe simulated in Chin's laboratory measured no more than 70 microns in diameter, approximately the diameter as a human hair. "It turns out the same kind of physics can happen on vastly different length scales," Chin explained. "That's the power of physics."
The goal is to better understand the cosmic evolution of a baby universe, the one that existed shortly after the big bang. It was much smaller then than it is today, having reached a diameter of only a hundred thousand light years by the time it had left the CMB pattern that cosmologists observe on the sky today.
In the end, what matters is not the absolute size of the simulated or the real universes, but their size ratios to the characteristic length scales governing the physics of Sakharov oscillations. "Here, of course, we are pushing this analogy to the extreme," Chin said.
380,000 years versus 10 milliseconds
"It took the whole universe about 380,000 years to evolve into the CMB spectrum we're looking at now," Chin said. But the physicists were able to reproduce much the same pattern in approximately 10 milliseconds in their experiment. "That suggests why the simulation based on cold atoms can be a powerful tool," Chin said.
None of the Science co-authors are cosmologists, but they consulted several in the process of developing their experiment and interpreting its results. The co-authors especially drew upon the expertise of UChicago's Wayne Hu, John Carlstrom and Michael Turner, and of Stanford University's Chao-Lin Kuo.
Hung noted that Sakharov oscillations serve as an excellent tool for probing the properties of cosmic fluid in the early universe. "We are looking at a two-dimensional superfluid, which itself is a very interesting object. We actually plan to use these Sakharov oscillations to study the property of this two-dimensional superfluid at different initial conditions to get more information."
The research team varied the conditions that prevailed early in the history of the expansion of their simulated universes by quickly changing how strongly their ultracold atoms interacted, generating ripples. "These ripples then propagate and create many fluctuations," Hung said. He and his co-authors then examined the ringing of those fluctuations.
Today's CMB maps show a snapshot of how the universe appeared at a moment in time long ago. "From CMB, we don't really see what happened before that moment, nor do we see what happened after that," Chin said. But, Hung noted, "In our simulation we can actually monitor the entire evolution of the Sakharov oscillations."
Chin and Hung are interested in continuing this experimental direction with ultracold atoms, branching into a variety of other types of physics, including the simulation of galaxy formation or even the dynamics of black holes.
"We can potentially use atoms to simulate and better understand many interesting phenomena in nature," Chin said. "Atoms to us can be anything you want them to be."
INFORMATION:
Ultracold big bang experiment successfully simulates evolution of early universe
2013-08-29
ELSE PRESS RELEASES FROM THIS DATE:
Tracking Huntington's disease through brain metabolism
2013-08-29
Huntington's disease (HD) is a hereditary disorder characterized by the progressive onset of neurodegeneration. Children of HD patients have a 50% chance of inheriting the disease, but symptoms do not appear until middle age. While genetic testing reliably determines if children of HD sufferers are carriers of the disease, it cannot provide information as to when symptoms will appear. In this issue of the Journal of Clinical Investigation, David Eidelberg and colleagues at the Feinstein Institute of Medical Research, evaluated changes in the brain metabolism of a small ...
On warming Antarctic Peninsula, moss and microbes reveal unprecedented ecological change
2013-08-29
By carefully analyzing a 150-year-old moss bank on the Antarctic Peninsula, researchers reporting in Current Biology, a Cell Press publication, on August 29 describe an unprecedented rate of ecological change since the 1960s driven by warming temperatures.
"Whilst moss and amoebae may not be the first organisms that come to mind when considering Antarctica, they are dominant components of the year-round terrestrial ecosystem in the small ice-free zones during an austral summer," says Jessica Royles of the British Antarctic Survey and the University of Cambridge. "We ...
Study discovers gene that causes devastating mitochondrial diseases
2013-08-29
MAYWOOD, Il. – Researchers have identified a novel disease gene in which mutations cause rare but devastating genetic diseases known as mitochondrial disorders.
Nine rare, disease-causing mutations of the gene, FBXL4, were found in nine affected children in seven families, including three siblings from the same family. An international team of researchers report the discovery in the American Journal of Human Genetics.
The lead author is Xiaowu Gai, PhD, director of the Center for Biomedical Informatics at Loyola University Chicago Stritch School of Medicine.
Mitochondrial ...
Single gene change increases mouse lifespan by 20 percent
2013-08-29
By lowering the expression of a single gene, researchers at the National Institutes of Health have extended the average lifespan of a group of mice by about 20 percent -- the equivalent of raising the average human lifespan by 16 years, from 79 to 95. The research team targeted a gene called mTOR, which is involved in metabolism and energy balance, and may be connected with the increased lifespan associated with caloric restriction.
A detailed study of these mice revealed that gene-influenced lifespan extension did not affect every tissue and organ the same way. For example, ...
Neuroscientists find a key to reducing forgetting -- it's about the network
2013-08-29
A team of neuroscientists has found a key to the reduction of forgetting. Their findings, which appear in the journal Neuron, show that the better the coordination between two regions of the brain, the less likely we are to forget newly obtained information.
The study was conducted at New York University by Lila Davachi, an associate professor in NYU's Department of Psychology and Center for Neural Science, and Kaia Vilberg, now a postdoctoral researcher at the University of Texas' Center for Vital Longevity and School of Behavioral and Brain Sciences in Dallas.
"When ...
Study reveals why the body clock is slow to adjust to time changes
2013-08-29
New research in mice reveals why the body is so slow to recover from jet-lag and identifies a target for the development of drugs that could help us to adjust faster to changes in time zone.
With funding from the Wellcome Trust and F. Hoffmann La Roche, researchers at the University of Oxford and F. Hoffmann La Roche have identified a mechanism that limits the ability of the body clock to adjust to changes in patterns of light and dark. And the team show that if you block the activity of this gene in mice, they recover faster from disturbances in their daily light/dark ...
Feinstein Institute researchers track Huntington's disease progression using PET scans
2013-08-29
MANHASSET, NY – Investigators at The Feinstein Institute for Medical Research have discovered a new way to measure the progression of Huntington's disease, using positron emission tomography (PET) to scan the brains of carriers of the gene. The findings are published in the September issue of The Journal of Clinical Investigation.
Huntington's disease causes the progressive breakdown of nerve cells in the brain, which leads to impairments in movement, thinking and emotions. Most people with Huntington's disease develop signs and symptoms in their 40s or 50s, but the onset ...
Bad to the bone: some breast cancer cells are primed to thrive
2013-08-29
When a cancer cell sloughs off the edge of a tumor in the breast, it faces a tough road to survive. The cell must not only remain physically intact as it rushes through blood vessels, but it also must find a new organ to lodge itself in, take in enough nutrients and oxygen to stay alive, and begin dividing, all while escaping notice by the body's immune system.
A team of Howard Hughes Medical Institute (HHMI) scientists has discovered that some loose breast cancer cells, have a leg up on survival—the genes they express make them more likely to prosper in bone tissue. ...
Scientists map molecular mechanism that may cause toxic protein buildup in dementing disorders
2013-08-29
SAN FRANCISCO, CA—August 29, 2013—There is no easy way to study diseases of the brain. Extracting brain cells, or neurons, from a living patient is difficult and risky, while examining a patient's brain post-mortem usually only reveals the disease's final stages. And animal models, while incredibly informative, have frequently fallen short during the crucial drug-development stage of research. But scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF) have taken a potentially more powerful approach: an advanced stem-cell technique ...
CRISPR/Cas genome engineering system generates valuable conditional mouse models
2013-08-29
CAMBRIDGE, Mass. (August 29, 2013) – Whitehead Institute researchers have used the gene regulation system CRISPR/Cas to engineer mouse genomes containing reporter and conditional alleles in one step. Animals containing such sophisticated engineered alleles can now be made in a matter of weeks rather than years and could be used to model diseases and study gene function.
"We've used CRISPR/Cas to mutate genes before, but the nature of the targeted mutations has been unpredictable," says Whitehead Founding Member Rudolf Jaenisch. "Now we can make specific deletions defined ...