(Press-News.org) A large international study analyzing genes in tens of thousands of individuals has discovered 11 new genetic signals associated with blood pressure levels. Ten of those signals are in or very near genes encoding proteins that appear to be likely targets for drugs already in existence or in development.
"The fact that most of these new gene signals are 'druggable' targets offers the possibility of expedited pharmaceutical development of therapeutics for high blood pressure, a serious risk factor for cardiovascular diseases," said geneticist Brendan J. Keating, D. Phil., of The Center for Applied Genomics at The Children's Hospital of Philadelphia, co-senior author of the study. "Some of the protein targets already are targets of existing drugs for other diseases, while others are the focus of drugs currently in early-phase clinical trials or under preclinical development."
Keating collaborated with two other senior co-authors, Folkert W. Asselbergs, M.D., Ph.D., of University Medical Center Utrecht, the Netherlands, and Patricia B. Munroe, Ph.D., of Queen Mary University, London, U.K. The study appears online today in the American Journal of Human Genetics. Study co-authors were from the U.S., the U.K., the Netherlands, Canada, Germany, Sweden and Ireland.
High blood pressure, or hypertension, a chronic medical condition, is a well-known risk factor for heart disease, stroke, peripheral artery disease and chronic kidney disease. It is a complex condition, affected by many different genes. Because not all patients respond well to current blood pressure medications and other treatments, and other patients require combinations of three or more drugs, there is a substantial unmet need for improved medicines.
In the current study, the researchers performed a discovery analysis of DNA from more than 87,000 individuals of European ancestry. They then assessed their initial findings in a replication test, using an independent set of another 68,000 individuals.
The study team confirmed 27 previously discovered gene signals associated with blood pressure, and discovered 11 novel genetic signals. When the researchers used pharmacological databases to analyze potential targets in the discovered genetic regions, they found that gene products associated with 10 of the genes were predicted to be targets for small-molecule drugs. Two genes, KCNJ11 and NQO1, in fact, are already currently targeted by existing approved drugs. "If clinicians can reposition existing drugs to treat some patients with hypertension, this will save significant time in drug development, as they won't be starting development from scratch," said Keating.
Keating added that other gene signals discovered in the study are associated with candidate drugs currently under development within pharmaceutical companies, and it may be possible that they can be repositioned as blood pressure therapeutics.
He stressed that even with possible repositioning, much research remains to be done to determine which drug candidates are effective against hypertension, possibly in personalized treatments based on patients' genetic makeup. Keating added that the list of genes affecting blood pressure will likely grow as research continues.
INFORMATION:
Keating received funding in part from the National Heart, Lung and Blood Institute. Other study funders included the British Heart Foundation and the Netherlands Organisation for Health Research and Development. In addition to his position at CHOP, Keating also is a faculty member of the Department of Pediatrics and the Division of Transplantation in the Department of Surgery in the Perelman School of Medicine at the University of Pennsylvania.
"Gene-centric Meta-Analysis in 87,736 Individuals of European Ancestry Identifies Multiple Blood-Pressure-Related Loci," American Journal of Human Genetics, published online Feb. 20, 2014.
About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program receives the highest amount of National Institutes of Health funding among all U.S. children's hospitals. In addition, its unique family-centered care and public service programs have brought the 535-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.
CHOP researcher co-leads study finding genes that affect blood pressure
10 of 11 new gene signals are likely drug targets
2014-02-20
ELSE PRESS RELEASES FROM THIS DATE:
Molecular 'cocktail' transforms skin cells into beating heart cells
2014-02-20
SAN FRANCISCO, CA—February 20, 2014—The power of regenerative medicine appears to have turned science fiction into scientific reality—by allowing scientists to transform skin cells into cells that closely resemble beating heart cells. However, the methods required are complex, and the transformation is often incomplete. But now, scientists at the Gladstone Institutes have devised a new method that allows for the more efficient—and, importantly, more complete—reprogramming of skin cells into cells that are virtually indistinguishable from heart muscle cells. These findings, ...
Scientists find resistance mechanism that could impact antibiotic drug development
2014-02-20
JUPITER, FL, February 20, 2014 – The use of antibiotics is often considered among the most important advances in the treatment of human disease. Unfortunately, though, bacteria are finding ways to make a comeback. According to the Centers for Disease Control, more than two million people come down with antibiotic-resistant infections annually, and at least 23,000 die because their treatment can't stop the infection. In addition, the pipeline for new antibiotics has grown dangerously thin.
Now, a new study by scientists from the Florida campus of The Scripps Research ...
Chemical chaperones have helped proteins do their jobs for billions of years
2014-02-20
ANN ARBOR—An ancient chemical, present for billions of years, appears to have helped proteins function properly since time immemorial.
Proteins are the body's workhorses, and like horses they often work in teams. There exists a modern day team of multiple chaperone proteins that help other proteins fold into the complex 3D shapes they must achieve to function. This is necessary to avert many serious diseases caused when proteins misbehave.
But what happened before this team of chaperones was formed? How did the primordial cells that were the ancestors of modern life ...
Scientists discover 11 new genes affecting blood pressure
2014-02-20
New research from Queen Mary University of London has discovered 11 new DNA sequence variants in genes influencing high blood pressure and heart disease.
Identifying the new genes contributes to our growing understanding of the biology of blood pressure and, researchers believe, will eventually influence the development of new treatments. More immediately the study highlights opportunities to investigate the use of existing drugs for cardiovascular diseases.
The large international study, published today in the American Journal of Human Genetics, examined the DNA ...
A changing view of bone marrow cells
2014-02-20
In the battle against infection, immune cells are the body's offense and defense—some cells go on the attack while others block invading pathogens. It has long been known that a population of blood stem cells that resides in the bone marrow generates all of these immune cells. But most scientists have believed that blood stem cells participate in battles against infection in a delayed way, replenishing immune cells on the front line only after they become depleted.
Now, using a novel microfluidic technique, researchers at Caltech have shown that these stem cells might ...
Compound improves cardiac function in mice with genetic heart defect, MU study finds
2014-02-20
COLUMBIA, Mo. — Congenital heart disease is the most common form of birth defect, affecting one out of every 125 babies, according to the National Institutes of Health. Researchers from the University of Missouri recently found success using a drug to treat laboratory mice with one form of congenital heart disease, hypertrophic cardiomyopathy — a weakening of the heart caused by abnormally thick muscle. By suppressing a faulty protein, the researchers reduced the thickness of the mice's heart muscles and improved their cardiac functioning.
Maike Krenz, M.D., has been ...
Turning back the clock on aging muscles?
2014-02-20
A study co-published in Nature Medicine this week by University of Toronto researcher Penney Gilbert has determined a stem cell based method for restoring strength to damaged skeletal muscles of the elderly.
Skeletal muscles are some of the most important muscles in the body, supporting functions such as sitting, standing, blinking and swallowing. In aging individuals, the function of these muscles significantly decreases.
"You lose fifteen percent of muscle mass every single year after the age of 75, a trend that is irreversible," cites Gilbert, Assistant Professor ...
Researchers say distant quasars could close a loophole in quantum mechanics
2014-02-20
In a paper published this week in the journal Physical Review Letters, MIT researchers propose an experiment that may close the last major loophole of Bell's inequality — a 50-year-old theorem that, if violated by experiments, would mean that our universe is based not on the textbook laws of classical physics, but on the less-tangible probabilities of quantum mechanics.
Such a quantum view would allow for seemingly counterintuitive phenomena such as entanglement, in which the measurement of one particle instantly affects another, even if those entangled particles are ...
Crop species may be more vulnerable to climate change than we thought
2014-02-20
A new study by a Wits University scientist has overturned a long-standing hypothesis about plant speciation (the formation of new and distinct species in the course of evolution), suggesting that agricultural crops could be more vulnerable to climate change than was previously thought.
Unlike humans and most other animals, plants can tolerate multiple copies of their genes – in fact some plants, called polyploids, can have more than 50 duplicates of their genomes in every cell. Scientists used to think that these extra genomes helped polyploids survive in new and extreme ...
Surprising culprit found in cell recycling defect
2014-02-20
To remain healthy, the body's cells must properly manage their waste recycling centers. Problems with these compartments, known as lysosomes, lead to a number of debilitating and sometimes lethal conditions.
Reporting in the Proceedings of the National Academy of Sciences (PNAS), researchers at Washington University School of Medicine in St. Louis have identified an unusual cause of the lysosomal storage disorder called mucolipidosis III, at least in a subset of patients. This rare disorder causes skeletal and heart abnormalities and can result in a shortened lifespan. ...
LAST 30 PRESS RELEASES:
New prognostic model enhances survival prediction in liver failure
China focuses on improving air quality via the coordinated control of fine particles and ozone
Machine learning reveals behaviors linked with early Alzheimer’s, points to new treatments
Novel gene therapy trial for sickle cell disease launches
Engineering hypoallergenic cats
Microwave-induced pyrolysis: A promising solution for recycling electric cables
Cooling with light: Exploring optical cooling in semiconductor quantum dots
Breakthrough in clean energy: Scientists pioneer novel heat-to-electricity conversion
Study finds opposing effects of short-term and continuous noise on western bluebird parental care
Quantifying disease impact and overcoming practical treatment barriers for primary progressive aphasia
Sports betting and financial market data show how people misinterpret new information in predictable ways
Long COVID brain fog linked to lung function
Concussions slow brain activity of high school football players
Study details how cancer cells fend off starvation and death from chemotherapy
Transformation of UN SDGs only way forward for sustainable development
New study reveals genetic drivers of early onset type 2 diabetes in South Asians
Delay and pay: Tipping point costs quadruple after waiting
Magnetic tornado is stirring up the haze at Jupiter's poles
Cancers grow uniformly throughout their mass
Researchers show complex relationship between Arctic warming and Arctic dust
Brain test shows that crabs process pain
Social fish with low status are so stressed out it impacts their brains
Predicting the weather: New meteorology estimation method aids building efficiency
Inside the ‘swat team’ – how insects react to virtual reality gaming
Oil spill still contaminating sensitive Mauritius mangroves three years on
Unmasking the voices of experience in healthcare studies
Pandemic raised food, housing insecurity in Oregon despite surge in spending
OU College of Medicine professor earns prestigious pancreatology award
Sub-Saharan Africa leads global HIV decline: Progress made but UNAIDS 2030 goals hang in balance, new IHME study finds
Popular diabetes and obesity drugs also protect kidneys, study shows
[Press-News.org] CHOP researcher co-leads study finding genes that affect blood pressure10 of 11 new gene signals are likely drug targets