PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists identify possible key in virus, cancer research

2015-08-27
(Press-News.org) TALLAHASSEE, Fla. -- Florida State University researchers have taken a big step forward in the fight against cancer with a discovery that could open up the door for new research and treatment options.

Fanxiu Zhu, the FSU Margaret and Mary Pfeiffer Endowed Professor for Cancer Research, and his team uncovered a viral protein in the cell that inhibits the major DNA sensor and thus the body's response to viral infection, suggesting that this cellular pathway could be manipulated to help a person fight infection, cancer or autoimmune diseases.

They named the protein KicGas.

"We can manipulate the protein and/or the sensor to boost or tune down the immune response in order to fight infectious and autoimmune diseases, as well as cancers," Zhu said.

The study was published today in the journal Cell Host and Microbe.

Zhu leads a research team investigating how DNA viruses can cause cancer, a major focus of researchers worldwide. About 15 percent of human cancer cases are caused by viruses, so scientists have been seeking answers about how the body responds to viral infection and how some viruses maintain life-long infections.

In the past few years, researchers finally identified the major DNA sensor in cells, known as cGas. That spurred researchers to further examine this sensor in the context of human disease because ideally that sensor should have been alerting the body to fight disease brought by a DNA virus.

Essentially, a DNA virus is an intracellular parasite that contains genetic material. Several notable diseases including smallpox, herpes, and chickenpox are caused by DNA viruses. One of the reasons these diseases are so difficult to cure is because they take over the cellular machinery of their human host, often making it impossible to kill the virus without also harming the person.

Although people are equipped with sophisticated immune systems to cope with viral infection, many viruses have co-evolved mechanisms to evade or suppress the body's immune responses.

So the discovery of this protein is critical to further exploration of how these DNA viruses work and how they can be thwarted.

To uncover this protein, Zhu's team studies Kaposi's sarcoma-associated herpesvirus (KSHV), a human herpesvirus that causes some forms of lymphoma and Kaposi's sarcoma, a cancer commonly occurring in AIDS patients and other immunocompromised individuals.

In this study, researchers screened every protein in a KSHV cell -- 90 in total -- and ultimately found that one of them directly inhibited the DNA sensor called cGAS. They infected human cell lines with the Kaposi's sarcoma virus to mimic natural infection, and found when they eliminated the inhibitor protein -- KicGas -- the cells produced a much stronger immune response.

To do this work, Zhu collaborated with several scientists both in the U.S. and Germany, including FSU Professor of Chemistry and Biochemistry Hong Li.

Li, whose focuses are molecular biology and molecular biophysics, specifically examined how the protein inhibited the cGAS activity in test tubes. For the next phase of research, she is building a three-dimensional model of the interactions to help them better understand how the inhibitor functions.

"These are hard problems to solve, and there is still much to learn here," Li said.

Learning how the inhibitor functions is a big next step, though.

"Once we figure that out, we can hopefully design something to fight the disease," Zhu said.

INFORMATION:

Other institutions contributing to the paper are the Frederick National Laboratory for Cancer Research, Friedrich-Alexander-University in Germany and the Institute of Clinical and Molecular Virology at University of Erlangen-Nürnberg.

The research is funded by the National Institutes of Health. END



ELSE PRESS RELEASES FROM THIS DATE:

Short bouts of activity may offset lack of sustained exercise in kids

2015-08-27
Brief intervals of exercise during otherwise sedentary periods may offset the lack of more sustained exercise and could protect children against diabetes, cardiovascular disease and cancer, according to a small study by researchers at the National Institutes of Health Children who interrupted periods of sitting with three minutes of moderate-intensity walking every half hour had lower levels of blood glucose and insulin, compared to periods when they remained seated for three hours. Moreover, on the day they walked, the children did not eat any more at lunch than on ...

Antibiotic use linked to type 2 diabetes diagnosis

2015-08-27
Washington, DC--People who developed Type 2 diabetes tended to take more antibiotics in the years leading up to the diagnosis than people who did not have the condition, according to a new study published in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism. A person develops diabetes, which is characterized by high blood sugar levels, when the individual cannot produce enough of the hormone insulin or insulin does not work properly to clear sugar from the bloodstream. More than 29 million Americans have diabetes, according to the Society's Endocrine ...

Interrupting sitting with walking breaks improves children's blood sugar

2015-08-27
Washington, DC--Taking 3-minute breaks to walk in the middle of a TV marathon or other sedentary activity can improve children's blood sugar compared to continuously sitting, according to a new National Institutes of Health (NIH) study published in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism (JCEM). A sedentary lifestyle can put children at risk of developing pediatric obesity and metabolic health problems such as diabetes. Nearly 17 percent of children and teens nationwide are obese, according to the Society's Endocrine Facts and Figures report. ...

Growth hormone reduces risk of osteoporosis fractures in older women

2015-08-27
Washington, DC--For years after it was administered, growth hormone continued to reduce the risk of fractures and helped maintain bone density in postmenopausal women who had osteoporosis, according to a new study published in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism. Osteoporosis is a progressive condition that causes the bones to become weak and more likely to break. More than 10 million American adults have osteoporosis, and 80 percent of the people being treated for the condition nationwide are women, according to the Society's Endocrine ...

Two satellites see newborn Tropical Storm Jimena consolidating

Two satellites see newborn Tropical Storm Jimena consolidating
2015-08-27
NASA's Aqua satellite and NOAA's GOES-West satellite provided temperature and cloud data on newborn Tropical Storm Jimena in the Eastern Pacific Ocean. Data from both satellites show the storm continues to consolidate. Tropical Depression 13E formed about 865 miles (1,390 km) south-southwest of the southern tip of Baja California, Mexico at 5 p.m. EDT (2100 UTC) on August 26. Six hours later, the depression strengthened into Tropical Storm Jimena at 11 p.m. EDT. A false-colored infrared image from Aug. 27 at 09:47 UTC (4:57 a.m. EDT) showed high, cold, strong thunderstorms ...

Soaking up carbon dioxide and turning it into valuable products

Soaking up carbon dioxide and turning it into valuable products
2015-08-27
A molecular system that holds great promise for the capture and storage of carbon dioxide has been modified so that it now also holds great promise as a catalyst for converting captured carbon dioxide into valuable chemical products. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have incorporated molecules of carbon dioxide reduction catalysts into the sponge-like crystals of covalent organic frameworks (COFs). This creates a molecular system that not only absorbs carbon dioxide, but also selectively reduces ...

Data backs limits on deep-sea fishing by depth

Data backs limits on deep-sea fishing by depth
2015-08-27
Researchers reporting in the Cell Press journal Current Biology on August 27 have evidence in support of a clearly defined depth limit for deep-sea fishing in Europe. The findings come just as the European Union considers controversial new legislation to manage deep-sea fisheries, including a ban on trawling below 600 meters. "The most notable thing to consider about our findings is that the trend in catch composition over the depth range of 600 to 800 meters shows that collateral ecological impacts are significantly increasing while the commercial gain per unit effort ...

Is neuroticism fueled by overthinking?

2015-08-27
Isaac Newton was a classic neurotic. He was a brooder and a worrier, prone to dwelling on the scientific problems before him as well as his childhood sins. But Newton also had creative breakthroughs--thoughts on physics so profound that they are still part of a standard science education. In a Trends in Cognitive Sciences Opinion paper published August 27, psychologists present a new theory for why neurotic unhappiness and creativity go hand-in-hand. The authors argue that the part of the brain responsible for self-generated thought is highly active in neuroticism, which ...

Scientists reveal cellular clockwork underlying inflammation

Scientists reveal cellular clockwork underlying inflammation
2015-08-27
Researchers at the Virginia Bioinformatics Institute at Virginia Tech have uncovered key cellular functions that help regulate inflammation -- a discovery that could have important implications for the treatment of allergies, heart disease, and certain forms of cancer. The discovery, to be published in the Oct. 6 issue of the journal Structure, explains how two particular proteins, Tollip and Tom1, work together to contribute to the turnover of cell-surface receptor proteins that trigger inflammation. "The inflammatory response can be a double-edged sword," said Daniel ...

Circadian genes go to sleep every day at the periphery of the nucleus

Circadian genes go to sleep every day at the periphery of the nucleus
2015-08-27
Mobility between different physical environments in the cell nucleus regulates the daily oscillations in the activity of genes that are controlled by the internal biological clock, according to a study that is published in the journal Molecular Cell. Eventually, these findings may lead to novel therapeutic strategies for the treatment of diseases linked with disrupted circadian rhythm. So called clock-controlled - or circadian - genes are part of the internal biological clock, allowing humans and other light-sensitive organisms to adjust their daily activity to the cycle ...

LAST 30 PRESS RELEASES:

Fig trees convert atmospheric CO2 to stone

Intra-arterial tenecteplase for acute stroke after successful endovascular therapy

Study reveals beneficial microbes that can sustain yields in unfertilized fields

Robotic probe quickly measures key properties of new materials

Climate change cuts milk production, even when farmers cool their cows

Frozen, but not sealed: Arctic Ocean remained open to life during ice ages

Some like it cold: Cryorhodopsins

Demystifying gut bacteria with AI

Human wellbeing on a finite planet towards 2100: new study shows humanity at a crossroads

Unlocking the hidden biodiversity of Europe’s villages

Planned hydrogen refuelling stations may lead to millions of euros in yearly losses

Planned C-sections increase the risk of certain childhood cancers

Adults who have survived childhood cancer are at increased risk of severe COVID-19

Drones reveal extreme coral mortality after bleaching

New genetic finding uncovers hidden cause of arsenic resistance in acute promyelocytic leukemia

Native habitats hold the key to the much-loved smashed avocado’s future

Using lightning to make ammonia out of thin air

Machine learning potential-driven insights into pH-dependent CO₂ reduction

Physician associates provide safe care for diagnosed patients when directly supervised by a doctor

How game-play with robots can bring out their human side

Asthma: patient expectations influence the course of the disease

UNM physician tests drug that causes nerve tissue to emit light, enabling faster, safer surgery

New study identifies EMP1 as a key driver of pancreatic cancer progression and poor prognosis

XPR1 identified as a key regulator of ovarian cancer growth through autophagy and immune evasion

Flexible, eco-friendly electronic plastic for wearable tech, sensors

Can the Large Hadron Collider snap string theory?

Stuckeman professor’s new book explores ‘socially sustainable’ architecture

Synthetic DNA nanoparticles for gene therapy

New model to find treatments for an aggressive blood cancer

Special issue of Journal of Intensive Medicine analyzes non-invasive respiratory support

[Press-News.org] Scientists identify possible key in virus, cancer research