Development of rapid method for extraction of natural blue chromophore from cyanobacteria
2021-01-26
(Press-News.org) Overview:
Phycocyanobilin (PCB) is a natural blue chromophore found in cyanobacteria. PCB is expected to be applied as food colorants and pharmaceuticals with anti-inflammatory and antioxidant properties. PCB also functions as the chromophore of photoswitches that control biological functions in synthetic biology. PCB is covalently bound to phycocyanin, a component of photosynthetic antenna protein, and its extraction requires specialized expertise, time-consuming procedures, and/or expensive reagents. A research group led by Assistant Professor Yuu Hirose at Toyohashi University of Technology succeeded in developing a highly efficient and rapid extraction method for PCB by treating cyanobacterial cells with alcohol under high-temperature and high-pressure conditions. They also demonstrated that this method can be applied to the isotopic labeling of PCB and its reconstitution with photoswitch protein. This technique is expected to lead to the development of new functional foods and medicines and the structural elucidation of various PCB-binding photoswitches.
Details:
Cyanobacteria are prokaryotes that perform oxygen-evolving photosynthesis and utilize phycobilisomes as light-harvesting antenna complexes for photosynthesis. Phycocyanin is a pigment protein that constitutes phycobilisome and has been used as a natural blue colorant in foods such as ice cream. Phycocyanin consists of a blue PCB chromophore and a colorless protein matrix that covalently bounds PCB. The protein matrix of phycocyanin is easily denatured under acidic and high-temperature conditions, which limits the application of phycocyanin as a food colorant. However, PCB is resistant to high temperature and acidic conditions and has the potential to complement the limitations of phycocyanin. However, conventional methods for the extraction of PCB from phycocyanin require a time-consuming purification step for phycocyanin and/or inefficient chemical reaction over 10 h for the cleavage of PCB.
A group comprising Takanari Kamo, Toshihiko Eki, and Yuu Hirose at the Department of Applied Chemistry and Biotechnology, Toyohashi University of Technology, established a simple and rapid method for extracting PCB from cyanobacterial cells. In the method, cyanobacterial cells were washed with alcohol at ambient temperature and atmospheric pressure to remove non-covalently bound chromophores, such as chlorophyll (Fig. 1). PCB was then separated from the protein matrix and extracted in ethanol via three 5-minute treatments under high temperature (125°C) and high pressure (100 bar) conditions (Fig. 1). The extraction efficiency of PCB is comparable to that of conventional methods. The extracted PCB can be used as a food colorant because it uses ethanol as the extraction solvent.
It has been reported in animal experiments that PCB has pharmacological effects, such as anti-inflammatory and anti-oxidant effects. It is expected to be consumed by humans as powder of dried cyanobacteria cells or purified phycocyanin through oral intake. The extraction of PCB would enable a 143- and 25-fold enrichment of PCB concentration in relation to the dried cell powder and purified phycocyanin, respectively, and could facilitate consumption by humans. Therefore, the use of this technology is expected to lead to the development of foods and pharmaceuticals containing higher concentrations of PCB.
PCB is also important in synthetic biology because it functions as a chromophore for photoswitch proteins that control biological functions. In this study, we demonstrated that PCB labeled with isotopic elements (13C and 15N) can be extracted from cyanobacteria cells grown in an isotopic medium. Isotopically labeled PCBs are useful in investigating the detailed structure of the photoswitch by vibrational spectroscopy and nuclear magnetic resonance spectroscopy. We also confirmed that the extracted PCB was incorporated into the photoswitch protein, sensing green and red light, and showing normal spectral sensitivities. Therefore, our technique will contribute to the elucidation of the structure of various PCB-binding photoswitches and the modification of their performance.
INFORMATION:
Future Outlook:
In the future, we expect to develop new blue colorants, functional foods, and pharmaceuticals using PCB. It is also important to elucidate the detailed structure of photoswitches using isotopically labeled PCB and to modify their performance.
Reference:
Pressurized liquid extraction of a phycocyanobilin chromophore and its reconstitution with a cyanobacteriochrome photosensor for efficient isotopic labeling.
Takanari Kamo, Toshihiko Eki, and Yuu Hirose
Plant and Cell Physiology, 2021 in press.
https://doi.org/10.1093/pcp/pcaa164
This research was supported by a Grant-in-Aid for Scientific Research (C) (grant number 19K06707) to Y.H. from the Japan Society for the Promotion of Science (JSPS) and by research grants to Y.H. from the Foundation for the promotion of Ion Engineering and Engineering and JGC-S Scholarship Foundation.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-01-26
The use of online messaging and social media apps among Singapore residents has spiked during the COVID-19 pandemic, a Nanyang Technological University, Singapore (NTU Singapore) study has found.
Three in four respondents (75%) said that their use of WhatsApp during the pandemic increased. This was followed by Telegram (60.3%), Facebook (60.2%) and Instagram (59.7%).
Accompanying this spike is videoconferencing fatigue, found the NTU Singapore study, which surveyed 1,606 Singapore residents from 17 to 31 December last year. Nearly one in two Singapore residents (44%) said they felt drained from videoconferencing activities, which ...
2021-01-26
Utilizing a newly developed state-of-the-art synchrotron technique, a group of scientists led by Dr. Ho-kwang Mao, Director of HPSTAR, conducted the first-ever high-pressure study of the electronic band and gap information of solid hydrogen up to 90 GPa. Their innovative high pressure inelastic X-ray scattering result serves as a test for direct measurement of the process of hydrogen metallization and opens a possibility to resolve the electronic dispersions of dense hydrogen. This work is published in the recent issue of Physical Review Letters.
The pressure-induced evolution of hydrogen's electronic band from a wide gap insulator to a closed gap metal, or metallic ...
2021-01-26
A group of KAIST researchers and collaborators have engineered a tiny brain implant that can be wirelessly recharged from outside the body to control brain circuits for long periods of time without battery replacement. The device is constructed of ultra-soft and bio-compliant polymers to help provide long-term compatibility with tissue. Geared with micrometer-sized LEDs (equivalent to the size of a grain of salt) mounted on ultrathin probes (the thickness of a human hair), it can wirelessly manipulate target neurons in the deep brain using light.
This study, led by Professor Jae-Woong Jeong, is a step forward from the wireless head-mounted ...
2021-01-26
The prevalence of inflammatory bowel diseases has significantly increased both in Finland and globally. These disorders cannot be entirely cured. Instead, they are treated with anti-inflammatory drugs and, at times, through surgery.
If conventional drug therapies based on anti-inflammatory drugs are ineffective, the diseases can be treated using infliximab, a biological TNF-α blocker that is administered intravenously. Infliximab is an antibody that prevents TNF-α, a pro-inflammatory factor, from binding with inflammatory cells in the intestine. It is effective in reducing inflammation and improving the patient's condition, while also controlling the disease well.
Although infliximab therapy is often effective, roughly 30-40% of patients either do not respond ...
2021-01-26
An international research team succeeded in gaining new insights into the artificially produced superheavy element flerovium, element 114, at the accelerator facilities of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. Under the leadership of Lund University in Sweden and with significant participation of Johannes Gutenberg University Mainz (JGU) as well as the Helmholtz Institute Mainz (HIM) in Germany and other partners, flerovium was produced and investigated to determine whether it has a closed proton shell. The results suggest that, contrary to expectations, flerovium is not a so-called "magic nucleus". The results were published in ...
2021-01-26
Two family members test positive for COVID-19 -- how do we know who infected whom? In a perfect world, network science could provide a probable answer to such questions. It could also tell archaeologists how a shard of Greek pottery came to be found in Egypt, or help evolutionary biologists understand how a long-extinct ancestor metabolized proteins.
As the world is, scientists rarely have the historical data they need to see exactly how nodes in a network became connected. But a new paper published in Physical Review Letters offers hope for reconstructing the missing information, using a new method to evaluate the rules that generate network models.
"Network models are like impressionistic ...
2021-01-26
A new paper from UC Santa Cruz researchers, published in END ...
2021-01-26
Overview:
Jihui Yuan (Assistant Professor, Department of Architecture and Civil Engineering, Toyohashi University of Technology) proposed a numerical bead model to predict the upward-to-downward reflection ratio of glass bead retro-reflective (RR) material purposed for urban heat island (UHI) mitigation and reducing energy consumption. It revealed that the retro-reflectivity of glass bead RR material gradually increases from morning to noon, at which time it begins to gradually decrease. These results will contribute to existing research on the absorption or reflection of solar radiation to improve urban thermal and lighting ...
2021-01-26
WASHINGTON--Poor social conditions caused by systemic racism contribute to health disparities in people with diabetes, according to a paper published in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism.
Minorities are disproportionately affected by diabetes because of poor social conditions that contribute to negative health outcomes such as poverty, unsafe housing, lack of access to healthy food and safe physical activity, and inadequate employment and educational opportunities. These are known as the social determinants of health and are the result of residential ...
2021-01-26
PITTSBURGH, 26 January 2021 - A vaginal ring containing the antiretroviral drug dapivirine and the contraceptive hormone levonorgestrel delivered sustained levels of each drug when used continuously for 90 days - levels likely sufficient to serve its dual purpose for protecting against both HIV and unwanted pregnancy, according to findings of a new study.
Results of the Phase I study of the 90-day dual-purpose ring are being presented at the HIV Research for Prevention (HIVR4P) Virtual Conference, or HIVR4P // Virtual, which is taking place over the course of ...
LAST 30 PRESS RELEASES:
[Press-News.org] Development of rapid method for extraction of natural blue chromophore from cyanobacteria