PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists map the brain of a nematode worm

Scientists map the brain of a nematode worm
2021-02-24
(Press-News.org) Researchers have mapped the physical organization of the brain of a microscopic soil-living nematode worm called Caenorhabditis elegans, creating a new model for the architecture of the animal's brain and how it processes information.

In a surprise twist, they found a large degree of variation in the structure of some neural circuits or pathways in individual worms which complemented a core set of neural circuits common to different animals.

The scientists say the worms' brains might have a lot more in common with larger animals than previously thought.

Created by neuroscientists at the University of Leeds in collaboration with researchers in New York's Albert Einstein College of Medicine, the brain map reveals that different spatial regions support different specialised circuits for routing information in the brain, where information is integrated before being acted upon.

The study - A multiscale brain map derived from whole-brain volumetric reconstructions - is published today (24 Feb) in the scientific journal Nature. (The paper will be available on this link when the embargo lifts: https://dx.doi.org/10.1038/s41586-021-03284-x)

C. elegans are nematodes that feed on bacteria found in rotting vegetation in your garden. They are only around a millimetre in length and as thin as a human hair.

An adult worm has exactly 302 cells in its nervous system - by comparison, the human brain has around 100 billion cells. But almost two thirds of the worm's nerve cells form a ring in the head region, where they make thousands of connections with each other.

This 'brain' is the control centre of the animal, where much of the sensing and decision-making takes place.

Even though the brain is very compact, the animal displays a range of complex behaviours, and neuroscientists have been interested in understanding its brain for decades. Previous studies have created 'wiring diagrams' for the connections between nerve cells.

This latest study, though, is the first to provide the complete spatial coordinates to those circuit diagrams.

Professor Netta Cohen, Computational Neuroscientist at the University of Leeds, who supervised the research, said: "The brain needs to organise information flow to control the animal's behaviour. But how the structure and function of the brain are related is an open question. Providing the spatial representation of the circuitry has allowed us to uncover the modular structure of this animal's brain."

Creating the brain map

The researchers used a legacy collection of electron microscope images of the brain of an adult and juvenile nematode worm. Those images revealed individual brain cells or neurons, allowing the researchers to map the organisation of the worms' neural circuits, from the level of individual cells through to the large scale architecture of the entire brain.

Structure-function of the brain

The scientists identified known neural circuits and pathways within the brain such as a navigation neural circuit which an animal would use to follow smells and tastes to forage for food. Another circuit is thought to facilitate mechano-sensation, so it would feel its way as it wriggles through the soil - or sense if it is surrounded by bacteria.

Their theory is that information is processed in the worm's brain through a number of 'layers'. In fact, a similar layered architecture is found in the human brain. Information flow starts in sensory cells, which respond to the environment. For example, cells may sense bacteria but are they the right bacteria to feed on - do they smell like the 'right' bacteria? The answer requires information to be integrated from multiple senses before being sent to the command area of the brain for action.

Professor Cohen said: "The brain map reveals a very elegant structure to support information flow through a worm's brain and it is more sophisticated than the traditional view that simple animals follow a stimulus-response path.

"The map suggests a convergence of different neural circuits - and this allows the worm to integrate all of the different cues it is receiving through its sensory cells and to coordinate the response."

Variation in brain structure

During their study, the researchers were surprised to discover the extent of individual variation in the worms' brains.

C elegans is one of the most studied animals in biology. During the life of the worm, the way its cells divide and grow follows a strict blueprint which is observed across the entire species. But when it comes to the brain cells, there seemed to be a high degree of variation in the way the brain cells formed contacts with neighbouring cells to create neural circuits.

Using mathematical and computer models, the scientists were able to discern between those connections that are likely to form the 'core' circuit across a large population of animals, and those that appear to be variable between individuals.

Dr. Christopher Brittin, a former PhD student at the University of Leeds and first author on the paper said: "This work raises interesting questions about how even seemingly simple nervous systems are able to accommodate both core and individualized brain circuitry."

The scientists found that only around half the wiring in the worms' brains is similar - the other half showed variation.

Professor Cohen added: "This finding was really exciting for us. First, this suggests that worm brains have a lot more in common with the brains of higher animals than we knew or expected, and the lessons learned about worms can help us learn about brains more generally."

The variable connectivity may support individuality, redundancy and adaptability of brains as the animals face challenging, dangerous and ever-changing environments.

INFORMATION:

For further information, please contact David Lewis in the Press office at the University of Leeds: d.lewis@leeds.ac.uk or 07710 013287

Image

There is a image of the brain map that can be downloaded by following this link. Please credit: University of Leeds.

The caption is: The spatial organisation of the C. elegans brain is modular. Shown are different regions supporting different information processing pathways in the brain of a worm.

Download the paper from this link when the embargo lifts: https://dx.doi.org/10.1038/s41586-021-03284-x

The University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 38,000 students from more than 150 different countries, and a member of the Russell Group of research-intensive universities. The University plays a significant role in the Turing, Rosalind Franklin and Royce Institutes.

We are a top ten university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and are in the top 100 of the QS World University Rankings 2020.

The University was awarded a Gold rating by the Government's Teaching Excellence Framework in 2017, recognising its 'consistently outstanding' teaching and learning provision. Twenty-six of our academics have been awarded National Teaching Fellowships - more than any other institution in England, Northern Ireland and Wales - reflecting the excellence of our teaching. http://www.leeds.ac.uk

Under embargo until 16.00 UK time/ 11.00 US Eastern time on Wednesday, 24 February

Peer Reviewed Data analysis


[Attachments] See images for this press release:
Scientists map the brain of a nematode worm

ELSE PRESS RELEASES FROM THIS DATE:

Researchers identify mechanism by which exercise strengthens bones and immunity

Researchers identify mechanism by which exercise strengthens bones and immunity
2021-02-24
Scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) have identified the specialized environment, known as a niche, in the bone marrow where new bone and immune cells are produced. The study, published in Nature, also shows that movement-induced stimulation is required for the maintenance of this niche, as well as the bone and immune-forming cells that it contains. Together, these findings identify a new way that exercise strengthens bones and immune function. Researchers from the Morrison laboratory discovered that forces created from walking or running are transmitted from bone surfaces along arteriolar blood vessels into the marrow inside bones. Bone-forming ...

New experiences enhance learning by resetting key brain circuit

2021-02-24
A study of spatial learning in mice shows that exposure to new experiences dampens established representations in the brain's hippocampus and prefrontal cortex, allowing the mice to learn new navigation strategies. The study, published in Nature, was supported by the National Institutes of Health. "The ability to flexibly learn in new situations makes it possible to adapt to an ever-changing world," noted Joshua A. Gordon, M.D., Ph.D., a senior author on the study and director of the National Institute of Mental Health, part of NIH. "Understanding the neural basis of this flexible learning in animals gives us insight into ...

Nature's funhouse mirror: understanding asymmetry in the proton

Natures funhouse mirror: understanding asymmetry in the proton
2021-02-24
Asymmetry in the proton confounds physicists, but a new discovery may bring back old theories to explain it. Symmetry -- displayed in areas ranging from mathematics and art, to living organisms and galaxies -- is an important underlying structure in nature. It characterizes our universe and enables it to be studied and understood. Because symmetry is such a pervasive theme in nature, physicists are especially intrigued when an object seems like it should be symmetric, but it isn't. When scientists are confronted with these broken symmetries, it's as if they've found an object with a strange reflection in the mirror. "Nature is leading the way for concepts in older models of the proton to get a second look." -- ...

Materials scientists show way to make durable artificial tendons from improved hydrogels

2021-02-24
UCLA materials scientists and their colleagues have developed a new method to make synthetic biomaterials that mimic the internal structure, stretchiness, strength and durability of tendons and other biological tissues. The researchers developed a two-pronged process to enhance the strength of existing hydrogels that could be used to create artificial tendons, ligaments, cartilage that are 10 times tougher than the natural tissues. Although the hydrogels contain mostly water with little solid content (about 10% polymer), they are more durable than Kevlar and rubber, which are both 100% polymer. This kind of breakthrough has never been achieved in water-laden polymers until this study, which was recently published in Nature. ...

Cancer research to gain from identification of 300 proteins that regulate cell division

Cancer research to gain from identification of 300 proteins that regulate cell division
2021-02-24
With the hope of contributing to the fight against cancer, researchers in Sweden have published a new molecular mapping of proteins that regulate the cell division process - identifying 300 such proteins. The release of the data, which was published today in the scientific journal, Nature, is significant because it helps bring medical research closer to the point of being able to target specific proteins to treat cancer. Identifying and understanding what characterizes these proteins is important, says co-author Emma Lundberg, a professor at KTH Royal Institute of Technology whose research group at Science ...

Characteristics, outcomes of US children, adolescents with multisystem inflammatory syndrome in children compared with severe COVID-19

2021-02-24
What The Study Did: National COVID-19 registry data are used in this study to describe the epidemiology, clinical characteristics, complications, and hospital and postdischarge outcomes of pediatric patients with multisystem inflammatory syndrome in children (MIS-C) and to compare each in patients with severe COVID-19. Authors: Adrienne G. Randolph, M.D., of Boston Children's Hospital, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jama.2021.2091) Editor's Note: The article includes conflict of ...

Subcutaneous semaglutide vs. placebo as adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity

2021-02-24
What The Study Did: This randomized clinical trial compares the effects of once-weekly subcutaneous semaglutide versussplacebo for weight management as an adjunct to intensive behavioral therapy with initial low-calorie diet in adults with overweight or obesity. Authors: Thomas A. Wadden, Ph.D., of the University of Pennsylvania in Philadelphia, is the corresponding author. To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/ (doi:10.1001/jama.2021.1831) Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions ...

Efficient, systematic genetic analysis helps dissect disease inheritance

Efficient, systematic genetic analysis helps dissect disease inheritance
2021-02-24
Many genetic variants have been found to have a linkage with genetic diseases, but the understanding of their functional roles in causing diseases are still limited. An international research team, including a biomedical scientist from City University of Hong Kong (CityU), has developed a high-throughput biological assay technique which enabled them to conduct a systematic analysis on the impact of nearly 100,000 genetic variants on the binding of transcription factors to DNA. Their findings provided valuable data for finding key biomarkers of type 2 diabetes for diagnostics and treatments. And they ...

Transplant patients may not need steroid treatment in the long run

Transplant patients may not need steroid treatment in the long run
2021-02-24
Long-term use of a medication used to treat kidney transplant patients may not be necessary in individuals with low-to-moderate risk of organ rejection, according to the results of a study led by a University of Cincinnati transplant researcher. The randomized clinical trial of 385 patients on immunosuppressive drugs tacrolimus and mycophenolate examined whether use of these medicines called corticosteroids could be eliminated at seven days after kidney transplantation. The study shows that 15 years after transplantation no difference in kidney transplant survival or patient survival rates were found between patients who received long-term corticosteroids versus those who had corticosteroid eliminated early, explains E. Steve Woodle, MD, the William ...

Researchers find new way to diagnose potential for Alzheimer's disease method less invasive, costly

Researchers find new way to diagnose potential for Alzheimers disease method less invasive, costly
2021-02-24
MEMPHIS, TN, FEBRUARY 24, 2021:- Early diagnosis of Alzheimer's disease has been shown to reduce cost and improve patient outcomes, but current diagnostic approaches can be invasive and costly. A recent study, published in the Journal of Alzheimer's Disease, has found a novel way to identify a high potential for developing Alzheimer's disease before symptoms occur. Ray Romano, Ph.D., RN, completed the research as part of his Ph.D. in the Nursing Science Program at the University of Tennessee Health Science Center (UTHSC) College of Graduate Health Sciences. Dr. Romano conducted the research through the joint laboratory ...

LAST 30 PRESS RELEASES:

Andrew Siemion to receive the SETI Institute’s 2024 Drake Award

New study shows how the Crimean-Congo hemorrhagic fever virus enters our cells

Neoadjuvant chemotherapy proves effective for locally advanced penile squamous cell carcinoma

Study flips treatment paradigm in bilateral Wilms tumor, shows resistance to chemotherapy may point toward favorable outcomes

Doctors received approximately $12.1 billion from drug and device makers between 2013-2022

Discovery suggests new strategy against follicular lymphoma

Making the future too bright: how wishful thinking can point us in the wrong direction

Ochsner Health named to Newsweek’s America’s Greatest Workplaces 2024 for Job Starters

Three-year study of young stars with NASA’s Hubble enters new chapter

North Carolina takes the lead in PFAs research with Collaboratory’s $3 million investment to expand the state’s research capacity

Is it the school, or the students?

Exploring the relationship between HIV pre-exposure prophylaxis and the incidence of chlamydia, gonorrhea and syphilis – findings from Denmark

Music: Song lyrics have become simpler and more repetitive since 1980

Environment: More than half of Colorado River’s water used to irrigate crops

When inequality is more than “skin-deep”: Social status leaves traces in the epigenome of spotted hyenas in Tanzania

Study explores the future of at-home cancer treatment

First performance standards published to measure the effectiveness of lifestyle medicine treatments

To keep volunteers, connect them

Suppressing boredom at work hurts future productivity, study shows

Older brain cells linger unexpectedly before their death

Clear shift in arterial diseases in diabetes

Celebrating half a century of pioneering excellence: EBMT marks its 50th anniversary

Ancient DNA reveals the appearance of a 6th century Chinese emperor

DNA study IDs descendants of George Washington from unmarked remains, findings to aid service member IDs going back to World War II

Familial Alzheimer’s disease transferred via bone marrow transplant in mice

Perspectives of oncologists on the ethical implications of using AI for cancer care

Industry payments to US physicians by specialty and product type

Andrew E. Place, MD, PhD appointed as Dana-Farber/Boston Children’s Cancer and Blood Disorders Center Vice President, Pediatric Chief Medical Officer

COVID-19 antibody discovery could explain long COVID

Wild plants face viral surprise

[Press-News.org] Scientists map the brain of a nematode worm