PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Research shows how mutations in SARS-CoV-2 allow the virus to dodge immune defenses

2021-03-16
(Press-News.org) The vast majority of people infected with SARS-CoV-2 clear the virus, but those with compromised immunity--such as individuals receiving immune-suppressive drugs for autoimmune diseases--can become chronically infected. As a result, their weakened immune defenses continue to attack the virus without being able to eradicate it fully.

This physiological tug-of-war between human host and pathogen offers a valuable opportunity to understand how SARS-CoV-2 can survive under immune pressure and adapt to it.

Now, a new study led by Harvard Medical School scientists offers a look into this interplay, shedding light on the ways in which compromised immunity may render SARS-CoV-2 fitter and capable of evading the immune system.

The research, published March 16 in Cell, shows that a mutated SARS-CoV-2 from a chronically infected immunocompromised patient is capable of evading both naturally occurring antibodies from COVID-19 survivors as well as lab-made antibodies now in clinical use for treatment of COVID-19.

The patient case was originally described Dec. 3, 2020, as a New England Journal of Medicine report by scientists at Brigham and Women's Hospital a few weeks before the U.K. and South African variants were first reported to the World Health Organization. Interestingly, the patient-derived virus contained a cluster of changes on its spike protein--the current target for vaccines and antibody-based treatments--and some of these changes were later detected in viral samples in the U.K. and South Africa, where they appear to have arisen independently, the researchers said.

The newly published study, which builds on the initial case report, shows something more alarming still. Some of the changes found in the patient-derived virus have not been identified yet in dominant viral variants circulating in the population at large. However, these changes have been already detected in databases of publicly available viral sequences. These mutations remain isolated, the authors of the report said, but they could be harbingers of viral mutants that may spread across the population.

The researchers emphasize that variants initially detected in the U.K. and South Africa remain vulnerable to currently approved mRNA vaccines, which target the entire spike protein rather than just portions of it. Nonetheless, the study results could also offer a preview into a future, in which current vaccines and treatments may gradually lose their effectiveness against next-wave mutations that render the virus impervious to immune pressures.

"Our experiments demonstrated that structural changes to the viral spike protein offer workarounds that allow the virus to escape antibody neutralization," said study senior author Jonathan Abraham, assistant professor of microbiology in the Blavatnik Institute at Harvard Medical School and an infectious disease specialist at Brigham and Women's Hospital. "The concern here is that an accumulation of changes to the spike protein over time could impact the long-term effectiveness of monoclonal antibody therapies and vaccines that target the spike protein."

Although the scenario remains hypothetical for now, Abraham said, it underscores the importance of two things. First, reducing the growth and spread of mutations by curbing the virus's spread both through infection-prevention measures and through widespread vaccination. Second, the need to design next-generation vaccines and therapies that target less mutable parts of the virus.

"How the spike responded to persistent immune pressure in one person over a five-month period can teach us how the virus will mutate if it continues to spread across the globe," added Abraham, who co-leads the COVID-19 therapeutics working group of the Massachusetts Consortium on Pathogen Readiness (MassCPR). "To help stop the virus from circulating, it's critical to make sure that vaccines are rolled out in an equitable way so that everyone in every country has a chance to get immunized."

A game of survival

Mutations are a normal part of a virus's life cycle. They occur when a virus makes copies of itself. Many of these mutations are inconsequential, others are harmful to the virus itself and yet others may become advantageous to the microbe, allowing it to propagate more easily from host to host. This latter change allows a variant to become more transmissible. If a change on a variant confers some type of evolutionary advantage to the virus, this variant can gradually outcompete others and become dominant. In the early months of the pandemic, the assumption--and hope--was that SARS-CoV-2 would not change too fast because, unlike most RNA viruses, it has a "proofreading" protein whose job is to prevent too many changes to the viral genome. But last fall, Abraham and colleagues became intrigued by--and then alarmed about--a patient receiving immune-suppressive treatment for an autoimmune disorder who had been infected with SARS-CoV-2. The patient had developed a chronic infection. A genomic analysis of the patient's virus showed a cluster of eight mutations on the viral spike protein, which the virus uses to enter human cells and that is the target of current antibody treatments and vaccines. Specifically, the mutations had clustered on a segment of the spike known as the receptor-binding domain (RBD), the part that antibodies latch onto to prevent SARS-CoV-2 from entering human cells.

Abraham and colleagues knew the changes were a sign that the virus had developed workarounds to the patient's immune defenses. But would these mutations allow the virus to dodge the immune assault of antibodies that were not the patient's own? To answer the question, Abraham and colleagues created lab-made, noninfectious replicas of the patient virus that mimicked the various structural changes that had accumulated in the span of five months.

In a series of experiments, the researchers exposed the dummy virus to both antibody-rich plasma from COVID-19 survivors and to pharmaceutically made antibodies now in clinical use. The virus dodged both naturally occurring and pharmaceutical-grade antibodies.

Experiments with a monoclonal antibody drug that contains two antibodies showed the virus was entirely resistant to one of the antibodies in the cocktail and somewhat, although not fully, impervious to the other. The second antibody was four-times less potent in neutralizing the mutated virus.

Not all eight mutations rendered the virus equally resistant to antibodies. Two particular mutations conferred the greatest resistance to both natural and lab-grown antibodies. In a final experiment, the researchers created a super antibody by cobbling together proteins from naturally occurring antibodies that had evolved over time to become more attuned to and better at recognizing SARS-CoV-2 and capable of latching onto it more tightly. The process, known as antibody affinity maturation, is the principle behind vaccine booster shots used to fortify existing antibodies. One specific variant containing mutations that had occurred late in the course of the patient's infection was capable of withstanding even this super-potent antibody. But the super-potent antibody did manage to neutralize viral mutations detected at a different time in the course of the infection.

"This observation underscores two points: That the virus is smart enough to eventually evolve around even our most potent antibody therapies, but that we can also get ahead by 'cooking' new potent antibodies now, before new variants emerge," Abraham said Getting ahead of the virus

Taken together the findings underscore the need to further understand human antibody responses to SARS-CoV-2 and to untangle the complex interplay between virus and human host, the researchers said. Doing so would allow scientist to anticipate changes in the virus and design countermeasures around these mutations before they become widespread.

In the short term, this speaks to the greater need to design antibody-based therapies and vaccines that directly target more stable, less mutable parts of the spike protein beyond its mutation-prone RBD region.

Long-term, this means that scientists should pivot toward developing therapies that go beyond antibody immunity and include also so-called cellular immunity, which is driven by T cells--a separate branch of the immune system that is independent of antibody-based immunity.

The most immediate implication, however, Abraham said, is to stay on top of emerging mutations through aggressive genomic surveillance. This means that instead of merely detecting whether SARS-CoV-2 is present in a patient sample, the tests should also analyze the viral genome and look for mutations. The technology to do so exists and is used in several countries as a way to monitor viral behavior and track changes to the virus across the population.

"In the United States, especially, the strategy has been to test and say whether a person is infected or not infected," Abraham said. "But there's a lot more information in that sample that can be obtained to help us track whether the virus is mutating. I am encouraged by the concerted efforts across the world to monitor sequences more aggressively--doing so is critical."

"It is important for us to stay ahead of this virus as it continues to evolve," said study first author Sarah Clark, member of the Abraham lab and a fourth-year student in the Ph.D. Program in Virology at Harvard University. "My hope that our study provides insights that allow us to continue to do that."

INFORMATION:

Co-authors included Lars Clark, Junhua Pan, Adrian Coscia, Sundaresh Shankar, Rebecca Johnson, Vesna Brusic, Manish Choudhary, James Regan, Jonathan Li of Harvard Medical School; and Anthony Griffiths and Lindsay McKay, both of Boston University's National Emerging Infectious Diseases Laboratories (NEIDL) and Boston University School of Medicine.

The work was supported with funding from National Institutes of Health grants P30 GM124165 and S10 RR029205, U.S. Department of Energy grant DE-AC02-06CH11357, MassCPR and China Evergrande Group.

Disclosures Jonathan Abraham, Lars Clark, and Sara Clark are inventors on a provisional patent application filed by Harvard University that includes antibodies reported in this work.



ELSE PRESS RELEASES FROM THIS DATE:

FSU researchers enhance quantum machine learning algorithms

FSU researchers enhance quantum machine learning algorithms
2021-03-16
A Florida State University professor's research could help quantum computing fulfill its promise as a powerful computational tool. William Oates, the Cummins Inc. Professor in Mechanical Engineering and chair of the Department of Mechanical Engineering at the FAMU-FSU College of Engineering, and postdoctoral researcher Guanglei Xu found a way to automatically infer parameters used in an important quantum Boltzmann machine algorithm for machine learning applications. Their findings were published in Scientific Reports. The work could help build artificial neural networks ...

Photocatalytic efficiency in photocatalysis found to be site sensitive

2021-03-16
Prof. HUANG Weixin and ZHANG Qun from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), together with domestic collaborators, probed into the photocatalytic oxidation of methanol on various anatase TiO2 nanocrystals. The results were published on Angewandte Chemie International Edition. Semiconductor-based photocatalysis has attracted extensive attention since its discovery, owing to its environmentally friendly production of chemical fuel utilizing solar energy. A photocatalytic reaction consists of light absorption and charge generation within photocatalysts, ...

Practical nanozymes discovered to fight antimicrobial resistance

2021-03-16
Nanozymes, a group of inorganic catalysis-efficient particles, have been proposed as promising antimicrobials against bacteria. They are efficient in killing bacteria, thanks to their production of reactive oxygen species (ROS). Despite this advantage, nanozymes are generally toxic to both bacteria and mammalian cells, that is, they are also toxic to our own cells. This is mainly because of the intrinsic inability of ROS to distinguish bacteria from mammalian cells. In a study published in Nature Communications, the research team led by XIONG Yujie and YANG Lihua from University of Science and Technology (USTC) of the Chinese Academy of Sciences (CAS) proposed a novel method to construct efficient-while-little-toxic nanozymes. The researchers showed that nanozymes ...

The fitter you are the better you burn fat - new research

2021-03-16
Females who are fit and healthy tend to burn more fat when they exercise than men, according to new research from a team of sports nutritionists. The research, comprising two new studies from academics led by the University of Bath's Centre for Nutrition, Exercise & Metabolism, analysed the factors that most influenced individuals' capacity to burn body fat when undertaking endurance sports. How the body burns fat is important to all of us for good metabolic health, insulin sensitivity and in reducing the risk of developing Type II diabetes. But, for endurance sport ...

From a window to a mirror: new material paves the way to faster computing

2021-03-16
Research led by the Cavendish Laboratory at the University of Cambridge has identified a material that could help tackle speed and energy, the two biggest challenges for computers of the future. Research in the field of light-based computing - using light instead of electricity for computation to go beyond the limits of today's computers - is moving fast, but barriers remain in developing optical switching, the process by which light would be easily turned 'on' and 'off', reflecting or transmitting light on-demand. The study, published in Nature Communications, shows that a material known as Ta2NiSe5 could switch between a window and a mirror in a quadrillionth of a second when struck by a short laser pulse, paving the way for the development ...

How bacterial traffic jams lead to antibiotic-resistant, multilayer biofilms

How bacterial traffic jams lead to antibiotic-resistant, multilayer biofilms
2021-03-16
The bacterial equivalent of a traffic jam causes multilayered biofilms to form in the presence of antibiotics, shows a study published today in eLife. The study reveals how the collective behaviour of bacterial colonies may contribute to the emergence of antibiotic resistance. These insights could pave the way to new approaches for treating bacterial infections that help thwart the emergence of resistance. Bacteria can acquire resistance to antibiotics through genetic mutations. But they can also defend themselves via collective behaviours such as joining together ...

New perovskite LED emits a spin-polarized glow

2021-03-16
The inclusion of a special new perovskite layer has enabled scientists to create a "spin-polarized LED" without needing a magnetic field or extremely low temperatures, potentially clearing the path to a raft of novel technologies. Details of the research conducted at the National Renewable Energy Laboratory (NREL) and the University of Utah appear in the journal Science. Researchers at NREL and around the world have been investigating the use of perovskite semiconductors for solar cells that have proven to be highly efficient at converting sunlight to electricity. Since a solar cell is one of the most demanding applications of any semiconductor, scientists are discovering other uses exist as well. "We are exploring the fundamental properties of metal-halide ...

Combination therapy may provide significant protection against lethal influenza

Combination therapy may provide significant protection against lethal influenza
2021-03-16
Philadelphia, March 16, 2021 - A significant proportion of hospitalized patients with influenza develop complications of acute respiratory distress syndrome, driven by virus-induced cytopathic effects as well as exaggerated host immune response. Reporting in The American Journal of Pathology, published by Elsevier, investigators have found that treatment with an immune receptor blocker in combination with an antiviral agent markedly improves survival of mice infected with lethal influenza and reduces lung pathology in swine-influenza-infected piglets. Their research also provides insights into the optimal timing of treatment to prevent acute lung injury. Previously, the investigators found ...

New imaging technology could help predict heart attacks

New imaging technology could help predict heart attacks
2021-03-16
WASHINGTON -- Researchers have developed a new intravascular imaging technique that could one day be used to detect coronary plaques that are likely to lead to a heart attack. Heart attacks are often triggered when an unstable plaque ruptures and then blocks a major artery that carries blood and oxygen to the heart. "If unstable coronary plaques could be detected before they rupture, pharmacological or other treatments could be initiated early to prevent heart attacks and save lives," said research team leader Seemantini Nadkarni from the Wellman Center for Photomedicine at Massachusetts General Hospital. "Our new imaging technique represents a major step toward achieving this." In The Optical Society (OSA) journal Biomedical ...

Researchers find a better way to measure consciousness

2021-03-16
MADISON, Wis. -- Millions of people are administered general anesthesia each year in the United States alone, but it's not always easy to tell whether they are actually unconscious. A small proportion of those patients regain some awareness during medical procedures, but a new study of the brain activity that represents consciousness could prevent that potential trauma. It may also help both people in comas and scientists struggling to define which parts of the brain can claim to be key to the conscious mind. "What has been shown for 100 years in an unconscious state like sleep are these slow ...

LAST 30 PRESS RELEASES:

Evaluating performance and agreement of coronary heart disease polygenic risk scores

Heart failure in zero gravity— external constraint and cardiac hemodynamics

Amid record year for dengue infections, new study finds climate change responsible for 19% of today’s rising dengue burden

New study finds air pollution increases inflammation primarily in patients with heart disease

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

In vitro model enables study of age-specific responses to COVID mRNA vaccines

[Press-News.org] Research shows how mutations in SARS-CoV-2 allow the virus to dodge immune defenses