Measuring space-time 'entanglement' of electromagnetic waves
2021-04-08
(Press-News.org) Extremely structured electromagnetic pulse carries not only the ultimate human dream of ultra-fast and ultra-intense energy extraction but also numerous extraordinary fundamental physical effects. As a traditional viewpoint, Electromagnetic pulses are typically treated as space-time (or space-frequency) separable solutions of Maxwell's equations, where spatial and temporal (spectral) dependence can be treated separately. However, recent advances in structured light and topological optics have highlighted the nontrivial wave-matter interactions of pulses with complex space-time separability (STNS), as well as their potential for energy and information transfer.
Recently, a research team from University of Southampton, for the first time, proposed basic concepts and solid mathematics for STNS states of electromagnetic waves for quantitatively measuring STNS, based on a quantum-mechanics-inspired methodology. In analogy to nonseparability in quantum entangled state, the authors introduce the concept of space-spectrum nonseparable states to describe the space-time nonseparability of a classical electromagnetic pulse and apply the "quantum" state tomography method to reconstruct the corresponding density matrix, then calculate the fidelity, concurrence, and entanglement of formation dug out from quantum measure technique as their quantitative measures of classical STNS.
In their paper "Measures of space-time nonseparability of electromagnetic pulse", the authors implement state tomography for the quantitative characterization of space-time "entangled" electromagnetic pulses and report on its application to the propagation of single-cycle toroidal pulses and wideband beams. Dealing with traditional monochromatic waves, spatial and temporal variables of Maxwell equations are separated naturally. For the cost of simplicity, it inevitably omits physical information at the same time. An example for exception is the spatiotemporal pulse, or vividly called "flying doughnuts" which is an ultrafast pulse tightly localized. For such pulse, it shows perfect STNS while propagating, which could be used as an ideal paradigm to study classical space-frequency entanglement.
Based on dynamics of flying doughnut pulses, they display a wideband spectral spectrum. With the introduction of normalized the position ratios and radical coordinates, the authors develop a concise mathematical representation. Compared with wideband Laguerre-Gaussian beam, such pulses interestingly emerge an isodiffraction picture, various frequency components diffract at the same rate, say, frequency state and spatial state are always "entangled", which provides prerequisite for following construction of states.
Due to the STNS, accompanied with spatial step function, it is possible to establish a set of orthogonal normalized bases in order to accurately characterized such properties. The inner product of the established Hilbert Space can be experimentally detected with the help of CCD camera. Moreover, their approach can be readily expanded mixed states causing mixed entanglement. For further characterizing "entangled" nature, the authors introduce tomography for such isodiffracting pulses to reconstruct the density matrix for the previous states. Though density matrix tells the full story of entanglement, such information is not so straightforward. Thus, the authors use the quantum-analog measurement to calculate fidelity, concurrence and entanglement of formation.
Summarily, the authors groundbreakingly propose novel concepts featuring STNS of optical field based on FDs and carry out quantum-like methodology for measurement which further reveals the connections between classical and quantum regime as well as quantitatively characterizes the spatiotemporal evolution of general structured pulses. This work opens a new page of spatiotemporal classical entanglement and provides largely unexplored degree of freedom in structured light, leading to novel application in ultrahigh-capacity communication, high-security encryption, topology- and quantum-analogous system.
INFORMATION:
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-04-08
Stem cell research has allowed medicine to go places that were once science fiction. Using stem cells, scientists have manufactured heart cells, brain cells and other cell types that they are now transplanting into patients as a form of cell therapy. Eventually, the field anticipates the same will be possible with organs. A new paper written by a group of international researchers led by Tsutomu Sawai, an assistant professor at the Kyoto University Institute for the Advanced Study of Human Biology (ASHBi) and the Center for iPS Cell Research and Application (CiRA), explains the future ethical implications of this research ...
2021-04-08
Travel and economic slowdowns due to the COVID-19 pandemic combined to put the brakes on shipping, seafloor exploration, and many other human activities in the ocean, creating a unique moment to begin a time-series study of the impacts of sound on marine life.
A community of scientists has identified more than 200 non-military ocean hydrophones worldwide and hopes to make the most of the unprecedented opportunity to pool their recorded data into the 2020 quiet ocean assessment and to help monitor the ocean soundscape long into the future. They aim for a total of 500 hydrophones capturing the signals of whales and other marine life while assessing the racket levels of human activity. ...
2021-04-08
Animals are remarkably diverse in their sleep and activity patterns due to foraging strategies, social behavior and their desire to avoid predators. With more than 3,000 types of cichlids, these freshwater fish may just be one of the most diverse species in the world. Lake Malawi alone, which stretches 350 miles through eastern Africa, is home to more than 500 cichlid species. They evolved from a few species that likely entered the lake about 3 million years ago and now display very different behaviors and inhabit well-defined niches throughout ...
2021-04-08
Scientists are reporting results of the first frontline clinical trial to use targeted therapy to treat high-risk pediatric Hodgkin lymphoma. The study showed that the addition of brentuximab vedotin achieved excellent outcomes, reduced side effects, and allowed for reduced radiation exposures.
The study was the result of work by a multi-site consortium dedicated to pediatric Hodgkin-lymphoma. Collaborating institutions include St. Jude Children's Research Hospital, Stanford University School of Medicine, Dana-Farber Cancer Institute, Massachusetts General Hospital, Maine Children's Cancer Program and OSF Children's Hospital of Illinois.
A paper detailing the findings was published today in ...
2021-04-08
The Mfd protein repairs bacterial DNA, but can also, to scientists' surprise, promote mutation.
Bacterial mutations can lead to antibiotic resistance.
Understanding this second "role" of the Mfd protein opens up opportunities for combating antibiotic resistance, and also the resistance of tumours to anti-cancer drugs and therapies.
Using a specialized protein, all bacteria are capable of rapidly and effectively repairing damage to their DNA from UV. However, this mutation frequency decline (Mfd) protein plays another role and causes mutations. A team involving ...
2021-04-08
In cancer, personalised medicine takes advantage of the unique genetic changes in an individual tumour to find its vulnerabilities and fight it. Many tumours have a higher number of mutations due to a antiviral defence mechanism, the APOBEC system, which can accidentally damage DNA and cause mutations.
Researchers at IRB Barcelona led by Dr. Travis Stracker and Dr. Fran Supek have found the HMCES enzyme to be the Achilles heel of some lung tumours, specifically those with a higher number of mutations caused by the APOBEC system.
"We have discovered that blocking HMCES is very damaging to cells with an activated ...
2021-04-08
Hispanic immigrants of working age -- 20 to 54 years old -- are over 11 times more likely to die of COVID-19 than U.S.-born men and women who are not Hispanic, according to a USC study of California death certificate data from 2020.
The study, published Monday in the END ...
2021-04-08
QUT researchers have used carbon dots, created from human hair waste sourced from a Brisbane barbershop, to create a kind of "armour" to improve the performance of cutting-edge solar technology.
In a study published in the Journal of Materials Chemistry A, the researchers led by Professor Hongxia Wang in collaboration with Associate Professor Prashant Sonar of QUT's Centre for Materials Science showed the carbon nanodots could be used to improve the performance of perovskites solar cells.
Perovskites solar cells, a relatively new photovoltaic technology, are seen as the best PV candidate to deliver low-cost, highly efficient solar electricity in coming years. ...
2021-04-08
EUGENE, Ore. -- April 8, 2021 -- Researchers exploring the developing central nervous system of fruit flies have identified nonelectrical cells that transition the brain from highly plastic into a less moldable, mature state.
The cells, known as astrocytes for their star-like shapes, and associated genes eventually could become therapeutic targets, said University of Oregon postdoctoral researcher Sarah Ackerman, who led the research.
"All of the cell types and signaling pathways I looked at are present in humans," Ackerman said. "Two of the genes that I ...
2021-04-08
More than a third of the Antarctic's ice shelf area could be at risk of collapsing into the sea if global temperatures reach 4°C above pre-industrial levels, new research has shown.
The University of Reading led the most detailed ever study forecasting how vulnerable the vast floating platforms of ice surrounding Antarctica will become to dramatic collapse events caused by melting and runoff, as climate change forces temperatures to rise.
It found that 34% of the area of all Antarctic ice shelves - around half a million square kilometres - including 67% of ice shelf area on the Antarctic Peninsula, would be at risk of destabilisation under 4°C of warming. Limiting temperature ...
LAST 30 PRESS RELEASES:
[Press-News.org] Measuring space-time 'entanglement' of electromagnetic waves