(Press-News.org) LOS ALAMOS, N.M., April 6, 2021--In the vast Colorado River basin, climate change is driving extreme, interconnected events among earth-system elements such as weather and water. These events are becoming both more frequent and more intense and are best studied together, rather than in isolation, according to new research.
"We found that concurrent extreme hydroclimate events, such as high temperatures and unseasonable rain that quickly melt mountain snowpack to cause downstream floods, are projected to increase and intensify within several critical regions of the Colorado River basin," said Katrina Bennett, a hydrologist at Los Alamos National Laboratory and lead author of the paper in the journal Water. "Concurrent extreme events of more than one kind, rather than isolated events of a single type, will be the ones that actually harm people, society, and the economy."
Another example of concurrent hydroclimate events might be low precipitation accompanied by high temperatures, which cause drought as an impact. Other factors such as low soil moisture or wildfire burn scars on steep slopes contribute to impacts.
"You never have just a big precipitation event that causes a big flood," Bennett said. "It results from a combination of impacts, such as fire, topography, and whether it was a wet or dry summer. That's the way we need to start thinking about these events."
The Los Alamos study looked heat waves, drought, flooding, and low flows in climate scenarios taken from six earth-system models for the entire Colorado River basin. The basin spans portions of Wyoming, Colorado, New Mexico, Utah, Nevada, Arizona, and California.
Using indicators such as maximum temperature, maximum precipitation, dry days, maximum and minimum streamflow, maximum and minimum soil moisture, and maximum evapotranspiration, the team ran the models for a historical period (1970-1999) and a projected future period (2070-2099). They studied the difference between the two periods (future minus historical) for events at four time scales: daily, monthly, seasonal, and annual.
Overall, precipitation across the Colorado increased by 2.1 millimeters between the future and historical periods, with some models showing increases in precipitation and some showing decreases. Nonetheless, the team found that in all cases, precipitation changes still drove an increase in concurrent extreme events.
Unsurprisingly, temperature increased across all six models and was an even stronger catalyst of events. Consistently across the entire basin, the study found an average temperature rise of 5.5 degrees Celsius between the future and historical periods.
In every scenario, the number and magnitude of each type of extreme event increased on average across the Colorado River Basin for the future period compared to the historical period. These numbers were given as a statistical expression of the change in frequency between the historical and future period, not as a count of discrete events.
Those increases have significant social, economic, and environmental implications for the entire region, which is a major economic engine for the United States. The study identified four critical watersheds in the Colorado basin--the Blue River basin, Uncompahgre, East Taylor, Salt/Verde watersheds--that are home to important water infrastructures, water resources, and hydrological research that would be particularly vulnerable to extreme events in the future.
More than 40 million people depend on the Colorado River basin for water, and it directly supports $1.4 trillion in agricultural and commercial activity--roughly one thirteenth of the U.S. economy, according to 2014 figures.
In Utah, Colorado, Arizona, and New Mexico, flooding, drought, freezing events, wildfire, severe storms, and winter storms have cost approximately $40 billion between 1980-2020.
INFORMATION:
The Paper: "Concurrent Changes in Extreme Hydroclimate Events in the Colorado River Basin," Katrina E. Bennett (corresponding author), Carl Talsma, and Riccardo Boero, in Water 2021, 13, 978, April 1, 2021. https://doi.org/10.3390/w13070978
The Funding: This work was funded by the Early Career Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory.
About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: Battelle Memorial Institute (Battelle), the Texas A&M University System (TAMUS), and the Regents of the University of California (UC) for the Department of Energy's National Nuclear Security Administration.
Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.
LA-UR-21-23222
Okazaki, Japan -mm dd, 2021--Many people with Parkinson's disease develop abnormal movements called L-DOPA induced dyskinesia, a major side effect of long-term medication. The mechanism underlying this side effect has been unknown. In this study, researchers have revealed relation between changes of neuronal activities and dyskinesia.
Parkinson's disease (PD) is the common age-related neurological disorder affecting 7 - 10 million people worldwide. It is caused by loss of dopaminergic neurons in the brain region called the substantia nigra, and induces difficulty in execution of movements (akinesia), muscle stiffness (rigidity), walking difficulty, tremorous hand movements ...
Details:
According to a linguistic survey report, people often confuse the pronunciation of /hi/ with that of /si/ in the dialect of Tokyo and the Tohoku region of Japan. A team of researchers at Toyohashi University of Technology and the National Institute for Japanese Language and Linguistics (NINJAL) found that the confusion is resulted from the articulation of the tongue varying in the transverse direction while the tongue tip is positioned at the same place of articulation. The study was published online in the Journal of the Acoustical Society of America on April 7, 2021.
In the Japanese language, the consonant /s/ followed by vowel /i/ is distinct ...
Osaka, Japan - Catalysts are crucial to making industrial processes viable. However, many of the non-precious metal catalysts used for synthesis have low activity, are difficult to handle, and/or require harsh reaction conditions. Osaka University researchers have developed a single-crystal cobalt phosphide nanorod catalyst that overcomes several of the limitations of conventional cobalt catalysts. Their findings were published in JACS Au.
Reductive amination is an important chemical reaction that is used to convert carbonyl compounds into amines. It is a key step in the production of many materials such as polymers, dyes, and pharmaceuticals, and is attractive because the reagents are cost effective and widely available, ...
An adaptive cognitive training program could help treat attention and working memory difficulties in children with sickle cell disease (SCD), a new study published in the of Journal of Pediatric Psychology shows.
These neurocognitive difficulties have practical implications for the 100,000 individuals in the U.S. with SCD, as 20-40% of youth with SCD repeat a grade in school and fewer than half of adults with SCD are employed. Interventions to prevent and treat neurocognitive difficulties caused by SCD have the potential to significantly improve academic outcomes, vocational attainment and quality of life.
The study, led by Steven Hardy, Ph.D., director of Psychology and Patient Care Services at the Center for Cancer and Blood Disorders at Children's ...
Extremely structured electromagnetic pulse carries not only the ultimate human dream of ultra-fast and ultra-intense energy extraction but also numerous extraordinary fundamental physical effects. As a traditional viewpoint, Electromagnetic pulses are typically treated as space-time (or space-frequency) separable solutions of Maxwell's equations, where spatial and temporal (spectral) dependence can be treated separately. However, recent advances in structured light and topological optics have highlighted the nontrivial wave-matter interactions of pulses with complex space-time separability (STNS), as well as their potential for energy and information transfer.
Recently, a research ...
Stem cell research has allowed medicine to go places that were once science fiction. Using stem cells, scientists have manufactured heart cells, brain cells and other cell types that they are now transplanting into patients as a form of cell therapy. Eventually, the field anticipates the same will be possible with organs. A new paper written by a group of international researchers led by Tsutomu Sawai, an assistant professor at the Kyoto University Institute for the Advanced Study of Human Biology (ASHBi) and the Center for iPS Cell Research and Application (CiRA), explains the future ethical implications of this research ...
Travel and economic slowdowns due to the COVID-19 pandemic combined to put the brakes on shipping, seafloor exploration, and many other human activities in the ocean, creating a unique moment to begin a time-series study of the impacts of sound on marine life.
A community of scientists has identified more than 200 non-military ocean hydrophones worldwide and hopes to make the most of the unprecedented opportunity to pool their recorded data into the 2020 quiet ocean assessment and to help monitor the ocean soundscape long into the future. They aim for a total of 500 hydrophones capturing the signals of whales and other marine life while assessing the racket levels of human activity. ...
Animals are remarkably diverse in their sleep and activity patterns due to foraging strategies, social behavior and their desire to avoid predators. With more than 3,000 types of cichlids, these freshwater fish may just be one of the most diverse species in the world. Lake Malawi alone, which stretches 350 miles through eastern Africa, is home to more than 500 cichlid species. They evolved from a few species that likely entered the lake about 3 million years ago and now display very different behaviors and inhabit well-defined niches throughout ...
Scientists are reporting results of the first frontline clinical trial to use targeted therapy to treat high-risk pediatric Hodgkin lymphoma. The study showed that the addition of brentuximab vedotin achieved excellent outcomes, reduced side effects, and allowed for reduced radiation exposures.
The study was the result of work by a multi-site consortium dedicated to pediatric Hodgkin-lymphoma. Collaborating institutions include St. Jude Children's Research Hospital, Stanford University School of Medicine, Dana-Farber Cancer Institute, Massachusetts General Hospital, Maine Children's Cancer Program and OSF Children's Hospital of Illinois.
A paper detailing the findings was published today in ...
The Mfd protein repairs bacterial DNA, but can also, to scientists' surprise, promote mutation.
Bacterial mutations can lead to antibiotic resistance.
Understanding this second "role" of the Mfd protein opens up opportunities for combating antibiotic resistance, and also the resistance of tumours to anti-cancer drugs and therapies.
Using a specialized protein, all bacteria are capable of rapidly and effectively repairing damage to their DNA from UV. However, this mutation frequency decline (Mfd) protein plays another role and causes mutations. A team involving ...