PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Bronze Age migrations changed societal organization and genomic landscape in Italy

Bronze Age migrations changed societal organization and genomic landscape in Italy
2021-05-10
(Press-News.org) A new study in Current Biology from the Institute of Genomics of the University of Tartu, Estonia has shed light on the genetic prehistory of populations in modern day Italy through the analysis of ancient human individuals during the Chalcolithic/Bronze Age transition around 4,000 years ago. The genomic analysis of ancient samples enabled researchers from Estonia, Italy, and the UK to date the arrival of the Steppe-related ancestry component to 3,600 years ago in Central Italy, also finding changes in burial practice and kinship structure during this transition.

In the last years, the genetic history of ancient individuals has been extensively studied focusing on movements and settlements of humans in different areas of Eurasia. However, the genetic history of individuals from the Italian Peninsula during the Chalcolithic/Bronze Age transition, around 4,000 years ago, was still unexplored. Researchers from the Institute of Genomics of the University of Tartu in collaboration with universities in Italy and the UK have collected human remains from the Italian Peninsula and generated ancient genomes in the aDNA laboratory at the University of Tartu, Estonia.

"For the study, we extracted ancient DNA of 50 individuals from four archaeological sites located in Northeastern and Central Italy dated to Chalcolithic, Early Bronze Age, and Bronze Age. We were able to generate the first genome-wide shotgun data of ancient Italians dated to the Bronze Age period and study the arrival of the Steppe-related ancestry component in the Italian Peninsula. This genetic component, ultimately tracing its origin in the Pontic-Caspian Steppe, a steppeland located between the Black Sea and the Caspian Sea, and very common in Central and Northern Europe. It is also presented in the Bronze Age Italian individuals which we scrutinised and suggesting that populations in the South of the Alps experienced a similar evolution," said the lead author of the work Tina Saupe, from the Institute of Genomics.

"For the genetic analysis, we used a reference dataset including individuals from the Italian Peninsula, Sicily, and Sardinia dated from the Neolithic to the Iron Age. We decided to study the new genomes altogether with available data to have a deeper insight into the genetic changes and demography of this important transition, but also to understand its impact in the following centuries" added co-author Francesco Montinaro from the same institution and from the University of Bari, Italy. Researchers found that samples dated to the Neolithic and Chalcolithic from the Italian Peninsula are more similar to Early Neolithic farmers in Eastern Europe and Anatolian farmers than to farmers from Western Europe, which opens the possibility of different histories for the two Neolithic groups in Europe.

"Because of the geographical distribution of the archaeological sites of published and newly generated genomes, we were able to date the arrival of the Steppe-related ancestry component to at least ~4,000 years ago in Northern Italy and ~3,600 years ago in Central Italy. We did not find the component in individuals dated to the Neolithic and Chalcolithic, but in individuals dated to the Early Bronze Age and increasing through time in the individuals dated to the Bronze Age," pointed out by Luca Pagani, Associate Professor at the Institute of Genomics and University of Padova and co-senior author of this work.

"In addition, we were able to find a shift in burial practice correlated with the change of relatedness between the individuals in two of the sites, but we did not find any changes in the phenotypes of ancient Italians during the transition," said Christiana L. Scheib, the aDNA research group leader at the Institute of Genomics and corresponding author.

"It was remarkable to see how this project developed over time and how the interpretation of the results changed once samples from Central Italy were added thanks to the collaboration with the universities of Oxford (UK), Durham (UK), Groningen (Netherlands) and Rome "Tor Vergata" (Italy) "said Cristian Capelli (University of Parma), co-senior author of this study.

"These results of this study have shown that the genetic profile of ancient individuals from the Italian Peninsula changed with the movement and settlement of humans since the Neolithic. This knowledge enlightens us on our genetic origin and enables plans for further studies including a denser sampling of individuals dated to the Iron Age and Roman empire," concluded Scheib.

INFORMATION:


[Attachments] See images for this press release:
Bronze Age migrations changed societal organization and genomic landscape in Italy

ELSE PRESS RELEASES FROM THIS DATE:

Implanted wireless device triggers mice to form instant bond

2021-05-10
Northwestern University researchers are building social bonds with beams of light. For the first time ever, Northwestern engineers and neurobiologists have wirelessly programmed -- and then deprogrammed -- mice to socially interact with one another in real time. The advancement is thanks to a first-of-its-kind ultraminiature, wireless, battery-free and fully implantable device that uses light to activate neurons. This study is the first optogenetics (a method for controlling neurons with light) paper exploring social interactions within groups of animals, which was previously impossible with current technologies. The research will be published May 10 in the journal ...

Diagramming the brain with colorful connections

Diagramming the brain with colorful connections
2021-05-10
There are billions of neurons in the human brain, and scientists want to know how they are connected. Cold Spring Harbor Laboratory (CSHL) Alle Davis and Maxine Harrison Professor of Neurosciences Anthony Zador, and colleagues Xiaoyin Chen and Yu-Chi Sun, published a new technique in Nature Neuroscience for figuring out connections using genetic tags. Their technique, called BARseq2, labels brain cells with short RNA sequences called "barcodes," allowing the researchers to trace thousands of brain circuits simultaneously. Many brain mapping tools allow neuroscientists to examine a handful of individual neurons at a time, for example by injecting them with dye. Chen, a postdoc in Zador's lab, explains how their tool, BARseq, is different: "The idea here is that instead ...

New tools enable rapid analysis of coronavirus sequences and tracking of variants

New tools enable rapid analysis of coronavirus sequences and tracking of variants
2021-05-10
The COVID-19 pandemic has spurred genomic surveillance of viruses on an unprecedented scale, as scientists around the world use genome sequencing to track the spread of new variants of the SARS-CoV-2 virus. The rapid accumulation of viral genome sequences presents new opportunities for tracing global and local transmission dynamics, but analyzing so much genomic data is challenging. "There are now more than a million genome sequences for SARS-CoV-2. No one had anticipated that number when we started sequencing this virus," said Russ Corbett-Detig, assistant professor of biomolecular engineering at UC Santa Cruz. The sheer number of coronavirus genome sequences and their rapid accumulation makes it hard to place new sequences on a "family ...

Study led by Penn Medicine reveals new mechanism of lung tissue regeneration

2021-05-10
PHILADELPHIA-- New research performed in mice models at Penn Medicine shows, mechanistically, how the infant lung regenerates cells after injury differently than the adult lung, with alveolar type 1 (AT1) cells reprograming into alveolar type 2 (AT2) cells (two very different lung alveolar epithelial cells), promoting cell regeneration, rather than AT2 cells differentiating into AT1 cells, which is the most widely accepted mechanism in the adult lung. These study findings, published today in Cell Stem Cell, show that the long-held assumption that AT1 ...

How planets form controls elements essential for life

How planets form controls elements essential for life
2021-05-10
HOUSTON - (May 10, 2021) - The prospects for life on a given planet depend not only on where it forms but also how, according to Rice University scientists. Planets like Earth that orbit within a solar system's Goldilocks zone, with conditions supporting liquid water and a rich atmosphere, are more likely to harbor life. As it turns out, how that planet came together also determines whether it captured and retained certain volatile elements and compounds, including nitrogen, carbon and water, that give rise to life. In a study published in Nature Geoscience, Rice graduate student and lead author Damanveer Grewal and Professor Rajdeep Dasgupta show the competition between the time it takes for material to accrete into a protoplanet and the time the protoplanet ...

In the emptiness of space, Voyager I detects plasma 'hum'

2021-05-10
ITHACA, N.Y. - Voyager 1 - one of two sibling NASA spacecraft launched 44 years ago and now the most distant human-made object in space - still works and zooms toward infinity. The craft has long since zipped past the edge of the solar system through the heliopause - the solar system's border with interstellar space - into the interstellar medium. Now, its instruments have detected the constant drone of interstellar gas (plasma waves), according to Cornell University-led research published in Nature Astronomy. Examining data slowly sent back from more than 14 billion miles away, Stella Koch Ocker, a Cornell doctoral student in astronomy, has uncovered the emission. "It's very faint and monotone, because ...

Tweet and re-tweet: songbird stuttering allows researchers to pinpoint causes in the brain

2021-05-10
Speech problems such as stammering or stuttering plague millions of people worldwide, including 3 million Americans. President Biden himself struggled with stuttering as a child and has largely overcome it with speech therapy. The cause of stuttering has long been a mystery, but researchers at Tufts University are beginning to unlock its causes and a strategy to develop potential treatments using a very curious model system - songbirds. In a study published today in Current Biology, the researchers were able to observe that a simple, reversible pharmacological treatment in zebra finches can stimulate rapid firing in a part of the brain that leads ...

Do purines influence cancer development?

Do purines influence cancer development?
2021-05-10
Numerous disease development processes are linked to epigenetic modulation. One protein involved in the process of modulation and identified as an important cancer marker is BRD4. A recent study by the research group of Giulio Superti-Furga, Principal Investigator and Scientific Director at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, now shows that the supply of purines as well as the purine synthesis of a cell can influence BRD4 activity and thus play a role in the carcinogenesis process. The findings were published in Nature Metabolism. Chromatin is a ...

Study finds pretty plants hog research and conservation limelight

Study finds pretty plants hog research and conservation limelight
2021-05-10
New Curtin University research has found a bias among scientists toward colourful and visually striking plants, means they are more likely to be chosen for scientific study and benefit from subsequent conservation efforts, regardless of their ecological importance. Co-author John Curtin Distinguished Professor Kingsley Dixon from Curtin's School of Molecular and Life Sciences was part of an international team that looked for evidence of an aesthetic bias among scientists by analysing 113 plant species found in global biodiversity hotspot the Southwestern Alps and mentioned in 280 research papers published between 1975 and 2020. Professor Dixon said the study tested whether there was a relationship between research focus on plant species and characteristics ...

Cancer cells hijack the 3D structure of DNA

2021-05-10
In cancer, a lot of biology goes awry: Genes mutate, molecular processes change dramatically, and cells proliferate uncontrollably to form entirely new tissues that we call tumors. Multiple things go wrong at different levels, and this complexity is partly what makes cancer so difficult to research and treat. So it stands to reason that cancer researchers focus their attention where all cancers begin: the genome. If we can understand what happens at the level of DNA, then we can perhaps one day not just treat but even prevent cancers altogether. This drive has led a ...

LAST 30 PRESS RELEASES:

Students who use dating apps take more risks with their sexual health

Breakthrough idea for CCU technology commercialization from 'carbon cycle of the earth'

Keck Hospital of USC earns an ‘A’ Hospital Safety Grade from The Leapfrog Group

Depression research pioneer Dr. Philip Gold maps disease's full-body impact

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

[Press-News.org] Bronze Age migrations changed societal organization and genomic landscape in Italy