PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Muscling up with nanoparticle-based anti-inflammatory therapy

Safe and localized delivery of nanoparticle-based anti-inflammatory cytokines programs a specific T cell response that strengthens muscles affected by Duchenne Muscular Dystrophy.

Muscling up with nanoparticle-based anti-inflammatory therapy
2021-06-24
(Press-News.org) By Benjamin Boettner

(Boston) - Muscular dystrophies are a group of genetic diseases that lead to the progressive loss of muscle mass and function in patients, with the incurable Duchenne Muscular Dystrophy (DMD), which affects all the body's muscles primarily in boys, being particularly severe. DMD can be caused by more than 7,000 unique mutations in the largest gene of the human genome, which encodes a central protein in muscle fibers. While this astounding number of mutations all variably block muscle function, the affected muscles share another common feature - chronic inflammation.

As chronic inflammation significantly contributes to the speed and severity of muscle degeneration, researchers are pursuing different anti-inflammatory approaches that could be applied to the weakening muscles of DMD patients. Thus far, it has become clear that broad, systemically applied anti-inflammatory therapies cannot reach sufficient efficacies in individual muscles and that, in addition, they can be toxic to patients and increase their risk of infections. To overcome these barriers, locally acting therapies that could be applied on-site at affected muscles would have significant advantages.

Now, a research team at Harvard's Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences (SEAS) led by Wyss Institute Founding Core Faculty member David Mooney, Ph.D., has developed a new approach in which specifically designed anti-inflammatory nanoparticles (NPs) that could be applied locally and selectively to chronically inflamed muscles severely affected or at more immediate risk of deterioration, and maybe difficult to reach with oral therapeutics. In an advanced mouse model of DMD, this strategy increased the volume of muscles covered by myofibers and improved muscle functions by boosting the numbers of infiltrating anti-inflammatory regulatory T cells (Tregs). The findings are published in Science Advances.

A biomaterial-based solution: design and validation

"Using NP-based cytokine delivery, we can create a therapeutic immune status in muscles affected by DMD that targets inflammation as a universal driver of the disease," said Mooney, who leads the Wyss Institute's Immuno-Materials Platform and is also the Robert P. Pinkas Family Professor of Bioengineering at SEAS. "Given the localized delivery of the highly effective cytokine interleukin-4 (IL-4), this approach could be developed as a stand-alone therapy, or in the future be used in combination with genetic approaches designed to repair specific DMD mutations in patients."

Pro-inflammatory and anti-inflammatory immune cells recruited to wasting muscles and further differentiating in them are thought to play an active game of tug-of-war. Both can temporarily get the upper hand with muscles going through continuous cycles of myofiber injury and regeneration while, in the longer-term, injury always wins. Importantly, the identities and activities of immune cells are controlled by pro- and anti-inflammatory cytokines, immune-modulating molecules that are released by immune or other cells in muscle tissue.

In 2018, Mooney's team had shown that gold nanoparticles (NPs) presenting the anti-inflammatory cytokine interleukin-4 (IL-4) when locally injected into acutely injured muscles of mice, could improve the muscles' strength by 40% compared to control NPs. The NPs were designed such that a core NP of gold was partially coated with a layer of the biocompatible polymer polyethylene glycol (PEG). To the parts of the NP surface revealed by gaps in the coating, IL-4 cytokine molecules were then bound (chemically conjugated), allowing them to be protected by the surrounding PEG, and to remain bioactive for extended times following their injection into muscle tissue and up-take by muscle immune cells.

To study the effects of NPs carrying IL-4 NPs as well as NPs carrying IL-10 (a differently acting anti-inflammatory cytokine) on DMD-affected muscles, the researchers used an existing mouse model, known as Mdx, that carries a specific DMD mutation found in human patients. As muscle degeneration occurs much slower in Mdx mice than in human patients, they developed a microinjury approach in which hind limb muscles of aged Mdx mice were repeatedly injured to accelerate murine disease progression and more closely mimic human disease. In Mdx mice, the microinjury caused chronic DMD-like inflammation and damage that persisted for several weeks.

Invigorating muscles with T cell action

One week after terminating the microinjury procedure, they injected IL-4 NPs (and IL-10 NPs) directly into the chronically injured muscle and after another two weeks analyzed the effects. "Cytokine therapy with IL-4 but not IL-10 conjugated to NPs significantly increased the area in cross-sections covered by muscle fibers and, in living animals, the treated muscles showed a four-fold increase in contraction force and speed (velocity) compared to mice in control groups," said first-author Theresa Raimondo, Ph.D., who performed the work as a graduate student in Mooney's group and now is a Postdoctoral Fellow at MIT.

DMD becomes most life threatening when the diaphragm and cardiac muscles become affected. The team hopes that their strategy one day could help improve breathing and heart function in patients, although future studies will have to assess this possibility.

"Interestingly, we could chalk up the regenerative effects to a specific increase in Tregs, an immunosuppressive T cell type that was known to counteract inflammatory processes in muscles weakened by DMD."

The team observed a 50% increase in the number of Tregs in chronically injured muscles of aged Mdx mice while the numbers of other types of immune cells, including neutrophils, dendritic cells, natural killer cells, monocytes, and macrophages remained unchanged with their NP-based cytokine therapy.

Especially macrophages in their anti-inflammatory state called M2 had also been suggested to contribute the restoring muscle strength and function in mouse models of DMD, and were found previously by Mooney's team to be key to repairing acutely injured muscles in normal mice. However, in the chronically inflamed muscles of the advanced Mdx model that were targeted with NP-based IL-4 therapy in the new study, M2 macrophages did not significantly contribute to the therapeutic effect. "Our combined findings highlight that the same cytokine therapy can achieve very different immunological outcomes with therapeutic effects on muscles dependent on the type of inflammation that is present," said Mooney.

"This approach developed by Dave Mooney's group at the Wyss' Immuno-Material Initiative could be developed as an alternative, strategically applied solution for treating patients with Duchenne Muscular Dystrophy whose loss of muscle mass and function cannot be effectively stopped by any other means. The same basic principle of NP-based cytokine therapy could also have potential for a variety of other muscle disorders where inflammation is a major force," said Wyss Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at SEAS.

PRESS CONTACT

Wyss Institute for Biologically Inspired Engineering at Harvard University
Benjamin Boettner, benjamin.boettner@wyss.harvard.edu, +1 617-432-8232

MULTIMEDIA AVAILABLE

INFORMATION:

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité - Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

The Harvard John A. Paulson School of Engineering and Applied Sciences (http://seas.harvard.edu) serves as the connector and integrator of Harvard's teaching and research efforts in engineering, applied sciences, and technology. Through collaboration with researchers from all parts of Harvard, other universities, and corporate and foundational partners, we bring discovery and innovation directly to bear on improving human life and society.


[Attachments] See images for this press release:
Muscling up with nanoparticle-based anti-inflammatory therapy

ELSE PRESS RELEASES FROM THIS DATE:

Making citizen science inclusive will require more than rebranding

2021-06-24
Scientists need to focus on tangible efforts to boost equity, diversity and inclusion in citizen science, researchers from North Carolina State University argued in a new perspective. Published in the journal Science, the perspective is a response to a debate about rebranding "citizen science," the movement to use crowdsourced data collection, analysis or design in research. Researchers said that while the motivation for rebranding is in response to a real concern, there will be a cost to it, and efforts to make projects more inclusive should go deeper than that. Their recommendations speak to a broader discussion about how to ensure science is responsive to the needs of a diverse audience. "At its heart, citizen science is a system of knowledge production ...

Parents of children with complex medical conditions more likely to have mental health issues

2021-06-24
Parents of children with the most complex medical conditions are more likely to report poor or fair mental health and struggle to find community help, according to a study completed by researchers at University of Rochester Medical Center (URMC) and Golisano Children's Hospital. The study was published in Pediatrics, the journal of the American Academy of Pediatrics (AAP). The study, "A National Mental Health Profile of Parents of Children with Medical Complexity," examined parent-reported data from the National Survey of Children's Health, and compared three groups: households of children with medical complexity (CMC), households of noncomplex children with special health care needs, and households of children ...

Ubiquitination primes cell for recovery from heat stress

2021-06-24
Not all stresses are created equal, according to a pair of new studies, which shows that distinct ubiquitination patterns underlie cell recovery following different environmental stressors. Eukaryotic cells respond to environmental stressors - such as temperature extremes, exposure to toxins or damage, for example - through adaptive programs that help to ensure their survival, including the shutdown of key cellular processes. These responses are often associated with the formation of stress granules (SGs) - dense cytoplasmic aggregations of proteins and RNA - as well as with ...

Higher doses of neutralizing antibody could protect humans against HIV

2021-06-24
Although the Antibody Mediated Prevention (AMP) study that launched in 2016 failed to show significant efficacy in a pair of clinical trials, Denis Burton argues in a Perspective that the AMP study's results represent a landmark in AIDS research; they show - for the first time - that a broadly neutralizing antibody (bnAb) can protect humans against exposure to some strains of HIV. According to Burton, the AMP study's data - despite not showing a significant difference between the numbers of infected individuals in the treated groups versus those in the placebo groups - still have tremendous implications for future HIV vaccine design and passive bnAb use strategies. The AMP study evaluated the immunotherapeutic ...

New fossil discovery from Israel points to complicated evolutionary process

New fossil discovery from Israel points to complicated evolutionary process
2021-06-24
BINGHAMTON, N.Y. -- Analysis of recently discovered fossils found in Israel suggest that interactions between different human species were more complex than previously believed, according to a team of researchers including Binghamton University anthropology professor Rolf Quam. The research team, led by Israel Hershkovitz from Tel Aviv University, published their findings in Science, describing recently discovered fossils from the site of Nesher Ramla in Israel. The Nesher Ramla site dates to about 120,000-140,000 years ago, towards the very end of the Middle Pleistocene time period. The human fossils were found by Dr. Zaidner of ...

Scientists can predict and design single atom catalysts for important chemical reactions

Scientists can predict and design single atom catalysts for important chemical reactions
2021-06-24
Researchers at Tufts University, University College London (UCL), Cambridge University and University of California at Santa Barbara have demonstrated that a catalyst can indeed be an agent of change. In a study published today in Science, they used quantum chemical simulations run on supercomputers to predict a new catalyst architecture as well as its interactions with certain chemicals, and demonstrated in practice its ability to produce propylene - currently in short supply - which is critically needed in the manufacture of plastics, fabrics and other chemicals. The improvements have potential for highly efficient, "greener" chemistry with a lower carbon footprint. The demand for propylene is ...

A new type of Homo unknown to science

A new type of Homo unknown to science
2021-06-24
The discovery of a new Homo group in this region, which resembles Pre-Neanderthal populations in Europe, challenges the prevailing hypothesis that Neanderthals originated from Europe, suggesting that at least some of the Neanderthals' ancestors actually came from the Levant. The new finding suggests that two types of Homo groups lived side by side in the Levant for more than 100,000 years (200-100,000 years ago), sharing knowledge and tool technologies: the Nesher Ramla people who lived in the region from around 400,000 years ago, and the Homo sapiens who arrived later, some 200,000 years ago. The new discovery also gives clues about a mystery in human evolution: How did genes of Homo sapiens penetrate the Neanderthal population that had presumably lived in Europe long before ...

Battle of the Pleiades against plant immunity

2021-06-24
Mythological nymphs reincarnate as a group of corn smut proteins to launch a battle on maize immunity. One of these proteins appears to stand out among its sister Pleiades, much like its namesake character in Greek mythology. The research carried out at GMI - Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences - is published in the journal PLOS Pathogens. Pathogenic organisms exist under various forms and use diverse strategies to survive and multiply at the expense of their hosts. Some of these pathogens are termed "biotrophic", as they are parasites that maintain their hosts alive. These biotrophic pathogens deregulate physiological processes in their hosts by suppressing their immune defenses and favoring disease development. ...

Vegetation growth in Northern Hemisphere stunted by water constraints in warming climate

Vegetation growth in Northern Hemisphere stunted by water constraints in warming climate
2021-06-24
INDIANAPOLIS -- A first-of-its-kind large-scale study of vegetation growth in the Northern Hemisphere over the past 30 years has found that vegetation is becoming increasingly water-limited as global temperatures increase. The results are significant since vegetation is one of the biggest factors when it comes to controlling water and carbon cycling across Earth, which influences global temperatures. The work by IUPUI and Indiana University Bloomington researchers Wenzhe Jiao, END ...

Primary lung cancers detected by LDCT are at lower risk of brain metastases

Primary lung cancers detected by LDCT are at lower risk of brain metastases
2021-06-24
(Denver)-Patients with primary lung cancer detected using low-dose computed tomography screening are at reduced risk of developing brain metastases after diagnosis, according to a study published in the Journal of Thoracic Oncology. JTO is an official journal of the International Association for the Study of Lung Cancer. The full study is available here: Impact of Low-Dose Computed Tomography Screening for Primary Lung Cancer on Subsequent Risk of Brain Metastasis - Journal of Thoracic Oncology (jto.org) The researchers, led by Summer Han, PhD, from Stanford University School of Medicine in Palo ...

LAST 30 PRESS RELEASES:

Drug candidate eliminates breast cancer tumors in mice in a single dose

WSU study shows travelers are dreaming forward, not looking back

Black immigrants attract white residents to neighborhoods

Hot or cold? How the brain deciphers thermal sensations

Green tea-based adhesive films show promise as a novel treatment for oral mucositis

Single-cell elemental analysis using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

BioChatter: making large language models accessible for biomedical research

Grass surfaces drastically reduce drone noise making the way for soundless city skies

Extent of microfibre pollution from textiles to be explored at new research hub

Many Roads Lead to… the embryo

Dining out with San Francisco’s coyotes

What’s the mechanism behind behavioral side effects of popular weight loss drugs?

How employee trust in AI drives performance and adoption

Does sleep apnea treatment influence patients’ risk of getting into car accidents?

Do minimum wage hikes negatively impact students’ summer employment?

Exposure to stress during early pregnancy affects offspring into adulthood

Curious blue rings in trees and shrubs reveal cold summers of the past — potentially caused by volcanic eruptions

New frontiers in organic chemistry: Synthesis of a promising mushroom-derived compound

Biodegradable nylon precursor produced through artificial photosynthesis

GenEditScan: novel k-mer analysis tool based on next-generation sequencing for foreign DNA detection in genome-edited products

Survey: While most Americans use a device to monitor their heart, few share that data with their doctor

Dolphins use a 'fat taste' system to get their mother’s milk

Clarifying the mechanism of coupled plasma fluctuations using simulations

Here’s what’s causing the Great Salt Lake to shrink, according to PSU study

Can DNA-nanoparticle motors get up to speed with motor proteins?

Childhood poverty and/or parental mental illness may double teens’ risk of violence and police contact

Fizzy water might aid weight loss by boosting glucose uptake and metabolism

Muscular strength and good physical fitness linked to lower risk of death in people with cancer

Recommendations for studying the impact of AI on young people's mental health  proposed by Oxford researchers

Trump clusters: How an English lit graduate used AI to make sense of Twitter bios

[Press-News.org] Muscling up with nanoparticle-based anti-inflammatory therapy
Safe and localized delivery of nanoparticle-based anti-inflammatory cytokines programs a specific T cell response that strengthens muscles affected by Duchenne Muscular Dystrophy.