PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Chasing the cells that predict death from severe COVID-19

Gladstone scientists have uncovered T-cell signatures that may help understand why some people succumb to severe COVID-19 while others recover

Chasing the cells that predict death from severe COVID-19
2021-07-01
(Press-News.org) SAN FRANCISCO, CA--June 28, 2021--While vaccines are doing a remarkable job of slowing the COVID-19 pandemic, infected people can still die from severe illness and new medications to treat them have been slow to arise. What kills these patients in the end doesn't seem to be the virus itself, but an over-reaction of their immune system that leads to massive inflammation and tissue damage.

By studying a type of immune cells called T cells, a team of Gladstone scientists has uncovered fundamental differences between patients who overcome severe COVID-19 and those who succumb to it. The team, working together with researchers from UC San Francisco and Emory University, also found that dying patients harbor relatively large numbers of T cells able to infiltrate the lung, which may contribute to the extensive lung deterioration that is a hallmark of fatal COVID-19.

The findings, published in the scientific journal Cell Reports, could pave the way for new treatments. Currently, patients who are hospitalized for severe COVID-19 mostly receive dexamethasone, a drug used to reduce inflammation.

"Dexamethasone has been a life saver for many patients," says Gladstone Associate Investigator Nadia Roan, PhD, a senior and corresponding author of the study. "But it is not always sufficient. Our study suggests that it may also be beneficial to directly prevent excess immune cells, including inflammatory T cells, from entering the lung and causing further damage. This approach could be a good complement to anti-inflammatory treatments for COVID-19 patients in the intensive care unit."

The work could also help with disease prognosis.

"Some patients can fall seriously ill from the virus," says Warner Greene, MD, PhD, senior investigator at Gladstone and co-senior author of the study. "We are in dire need for effective ways to anticipate the course of disease, as well as to alleviate lung damage in people with severe COVID-19."

An Imbalance of T Cells

T cells are a crucial component of a successful immune response to many viruses, including SARS-CoV-2, the virus that causes COVID-19. And they are markedly depleted from the blood during severe COVID-19.

To characterize the features of the T cells that remain, the scientists obtained blood samples that had been collected from COVID-19 patients in an intensive care unit (ICU). While about half of these patients eventually recovered, the other half died of the disease. By examining samples taken at different times during the patients' stay in the ICU, the scientists were able to discern trends that they could relate to the disease outcome.

Much has already been learned about the immune response of COVID-19 patients during active infection or after convalescence. For example, studies from convalescent individuals, including Roan's own previous work, reveal how the immune system may provide long-term immunity. Less clear, however, is how the immune system may protect from severe illness or, conversely, contribute to its worsening and to death. To understand the cause of fatalities, the researchers needed to compare fatal to non-fatal severe cases.

Using CyTOF, a technique implemented in Roan's lab that distinguishes the many types of T cells circulating in the body, the scientists found profound differences between the ICU patients' T-cell response to the virus.

"The T-cell response to SARS-CoV-2 increased in patients who were eventually discharged from the ICU and recovered," says Roan, who is also an associate professor of urology at UC San Francisco. "But in patients who eventually died, we sometimes could not detect any T-cell response, or their response decreased over time."

Differences also extended to the composition of the patients' T cells that recognize the SARS-CoV-2 virus. In particular, patients who survived harbored a growing number of T cells called Th1, which are known as important fighters of viral infection. Roan's team found molecular features on the Th1 cells that may explain why they were able to multiply in these patients.

By contrast, they found that patients who died had an elevated number of T cells secreting an inflammatory molecule that would contribute to a worsening of their lung condition. These patients also held more regulatory T cells recognizing the virus. Regulatory T cells normally help quiet down the immune response once infection subsides.

"Perhaps in these patients, regulatory T cells were activated too early and prevented effector T cells from ever mounting an adequate immune response to SARS-CoV-2," says Roan. "This could help explain the patients' paltry response to the virus."

Based on these findings, doctors might be able to predict the course of illness from the relative abundance of Th1 and regulatory T cells that recognize SARS-CoV-2 in a patient's blood.

Roan cautions, however, "Our findings show correlations, not causes. The immune system is complex, with many moving parts and possible interactions between them. Proving the cause of fatality will require further studies."

Stemming the Flow of Lung-Homing Cells

Another potential cause of fatality that the team discovered was a surge in T cells able to infiltrate the lungs of dying patients. By contrast, these cells decreased over time in the patients who recovered.

The scientists call these lung-homing cells "bystander T cells," because they are T cells that do not directly recognize the SARS-CoV-2 virus.

"Our study suggests that during severe COVID-19, bystander T cells are recruited from the blood into the lung, where they may contribute to immune-mediated pathology," says Roan.

What triggers the surge of bystander T cells in severe COVID-19 cases remains unclear, but may be in part mediated by proteins secreted by the lung that recruit these cells. Regardless, stemming their flow into the lung may help reduce lung damage and accelerate the recovery of patients with severe illness.

This approach is particularly promising, as drugs that antagonize a molecule found on the surface of the bystander T cells are already approved for the treatment of metastatic cancer.

"Our next step is to test these drugs in a mouse model of severe COVID-19," says Roan. "We hope that after further scrutiny, such drugs could rapidly be tested as adjunctive treatment for COVID-19."

INFORMATION:

About the Study

The paper "Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19" was published in Cell Reports on June 28: https://www.cell.com/cell-reports/fulltext/S2211-1247(21)00827-5

Other authors include Jason Neidleman, Xiaoyu Luo, Ashley F. George, and Matthew McGregor from Gladstone Institutes; Junkai Yang and Eliver Ghosn of Emory Vaccine Center, Emory University, Atlanta, GA, USA; Cassandra Yun, Kara Lynch, Victoria Murray, Gurjot Gill, Joshua Vasquez, and Sulggi A. Lee of UC San Francisco.

This work was supported by the Van Auken Private Foundation, David Henke, and Pamela and Edward Taft; the Program for Breakthrough Biomedical Research, which is partly funded by the Sandler Foundation; philanthropic funds donated to Gladstone Institutes by The Roddenberry Foundation and individual donors devoted to COVID-19 research; Fast Grants Awards (2164, 2208, and 2160), a part of Emergent Ventures from the Mercatus Center at George Mason University; and the National Institutes of Health (R01 AI123126-05S1, P30 DK063720, and S10 1S10OD018040).

About Gladstone Institutes

To ensure our work does the greatest good, Gladstone Institutes (https://gladstone.org) focuses on conditions with profound medical, economic, and social impact--unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with the University of California, San Francisco.


[Attachments] See images for this press release:
Chasing the cells that predict death from severe COVID-19

ELSE PRESS RELEASES FROM THIS DATE:

Antidiabetic drug causes double the weight loss of competitor in Type 2 diabetes patients

2021-07-01
BUFFALO, N.Y. -- Patients with Type 2 diabetes who were prescribed SGLT2 inhibitors lost more weight than patients who received GLP-1 receptor agonists, according to a University at Buffalo-led study. The research, which sought to evaluate the difference in weight loss caused by the antidiabetic medications -- both of which work to control blood sugar levels -- found that among 72 patients, people using SGLT2 inhibitors experienced a median weight loss of more than 6 pounds, while those on GLP-1 receptor agonists lost a median of 2.5 pounds. The findings, published last month ...

Rewiring the adult brain — Scanning the mind of a blind 'Batman' reveals that novel maps can emerge in the adult brain

Rewiring the adult brain — Scanning the mind of a blind Batman reveals that novel maps can emerge in the adult brain
2021-07-01
The adult brain is more malleable than previously thought, according to researchers from the Interdisciplinary Center Herzliya. They trained a 50-year-old man, blind from birth, to "see" by ear, and found that neural circuits in his brain formed so-called topographic maps - a type of brain organization previously thought to emerge only in infancy. This finding reported recently in END ...

Newly discovered genetic variants in a single gene cause neurodevelopmental disorder

2021-07-01
Rochester, Minn. -- Mayo Clinic researchers have discovered that genetic variants in a neuro-associated gene called SPTBN1 are responsible for causing a neurodevelopmental disorder. The study, published in Nature Genetics, is a first step in finding a potential therapeutic strategy for this disorder, and it increases the number of genes known to be associated with conditions that affect how the brain functions. "The gene can now be included in genetic testing for people suspected of having a neurodevelopmental disorder, which may end the diagnostic odyssey these people and their families have endured," says Margot Cousin, Ph.D., a translational ...

Scientists resurrect 'forgotten' genus of algae living in marine animals

Scientists resurrect forgotten genus of algae living in marine animals
2021-07-01
UNIVERSITY PARK, Pa. -- In the late 1800s, scientists were stumped by the "yellow cells" they were observing within the tissues of certain temperate marine animals, including sea anemones, corals and jellyfish. Were these cells part of the animal or separate organisms? If separate, were they parasites or did they confer a benefit to the host? In a paper published in the journal Nature in 1882, biologist Sir Patrick Geddes of Edinburgh University proffered that not only were these cells distinct entities, but they were also beneficial to the animals in which they lived. He assigned them to a new genus, Philozoon -- from the Greek phileo, meaning 'to love ...

For women workers in India, direct deposit is 'digital empowerment'

2021-07-01
Giving women in India's Madhya Pradesh state greater digital control over their wages encouraged them to enter the labor force and liberalized their beliefs about working women, concluded a new study co-authored by Yale economists Rohini Pande and Charity Troyer Moore. The study, published in the American Economic Review, found that a relatively simple intervention directed to poor women -- providing them access to their own bank accounts and direct deposit for their earnings from a federal workfare program, along with basic training on how to use local bank kiosks -- increased the amount ...

The rise and fall of elephants

The rise and fall of elephants
2021-07-01
Based on fossil finds, we know that the vast majority of species that once inhabited the earth have become extinct. For example, there are about 5,500 mammal species living on the planet today, but we know of at least 160,000 fossil species, so for every mammal species living today, there are at least 30 extinct ones. We therefore know with great certainty that the lineages of living things come and go along immense time scales. But what factors cause these lineages to come into being and disappear is still an unsolved question. To investigate ...

Using AI to predict 3D printing processes

Using AI to predict 3D printing processes
2021-07-01
Additive manufacturing has the potential to allow one to create parts or products on demand in manufacturing, automotive engineering, and even in outer space. However, it's a challenge to know in advance how a 3D printed object will perform, now and in the future. Physical experiments -- especially for metal additive manufacturing (AM) -- are slow and costly. Even modeling these systems computationally is expensive and time-consuming. "The problem is multi-phase and involves gas, liquids, solids, and phase transitions between them," said University of Illinois Ph.D. student Qiming ...

Mefloquine: A promising drug 'soldier' in the battle against COVID-19

2021-07-01
Early 2020 saw the world break into what has been described as a "war-like situation": a pandemic, caused by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), the likes of which majority of the living generations across most of the planet have not ever seen. This pandemic has downed economies and resulted in hundreds of thousands of deaths. At the dawn of 2021, vaccines have been deployed, but before populations can be sufficiently vaccinated, effective treatments remain the need of the hour. Thus, other than fast-tracking research into novel drugs, scientists have also been exploring their ...

New approach can add diversity to crop species without breeding GMOs

New approach can add diversity to crop species without breeding GMOs
2021-07-01
Breeding better crops through genetic engineering has been possible for decades, but the use of genetically modified plants has been limited by technical challenges and popular controversies. A new approach potentially solves both of those problems by modifying the energy-producing parts of plant cells and then removing the DNA editing tool so it cannot be inherited by future seeds. The technique was recently demonstrated through proof-of-concept experiments published in the journal Nature Plants by geneticists at the University of Tokyo. "Now we've got a way to modify chloroplast genes specifically and measure their potential to make a good plant," said Associate Professor Shin-ichi ...

How children integrate information

How children integrate information
2021-07-01
"We know that children use a lot of different information sources in their social environment, including their own knowledge, to learn new words. But the picture that emerges from the existing research is that children have a bag of tricks that they can use", says Manuel Bohn, a researcher at the Max Planck Institute for Evolutionary Anthropology. For example, if you show a child an object they already know - say a cup - as well as an object they have never seen before, the child will usually think that a word they never heard before belongs with the new object. Why? Children use information ...

LAST 30 PRESS RELEASES:

Impact of pollutants on pollinators, and how neural circuits adapt to temperature changes

Researchers seek to improve advanced pain management using AI for drug discovery

‘Neutron Nexus’ brings universities, ORNL together to advance science

Early release from NEJM Evidence

UMass Amherst astronomer leads science team helping to develop billion-dollar NASA satellite mission concept

Cultivating global engagement in bioengineering education to train students skills in biomedical device design and innovation

Life on Earth was more diverse than classical theory suggests 800 million years ago, a Brazilian study shows

International clean energy initiative launches global biomass resource assessment

How much do avoidable deaths impact the economy?

Federal government may be paying twice for care of veterans enrolled in Medicare Advantage plans

New therapeutic target for cardiac arrhythmias emerges

UC Irvine researchers are first to reveal role of ophthalmic acid in motor function control

Moffitt study unveils the role of gamma-delta T cells in cancer immunology

Drier winter habitat impacts songbirds’ ability to survive migration

Donors enable 445 TPDA awards to Neuroscience 2024

Gut bacteria engineered to act as tumor GPS for immunotherapies

Are auditory magic tricks possible for a blind audience?

Research points to potential new treatment for aggressive prostate cancer subtype

Studies examine growing US mental health safety net

Social risk factor domains and preventive care services in US adults

Online medication abortion direct-to-patient fulfillment before and after the Dobbs v Jackson decision

Black, Hispanic, and American Indian adolescents likelier than white adolescents to be tested for drugs, alcohol at pediatric trauma centers

Pterosaurs needed feet on the ground to become giants

Scientists uncover auditory “sixth sense” in geckos

Almost half of persons who inject drugs (PWID) with endocarditis will die within five years; women are disproportionately affected

Experimental blood test improves early detection of pancreatic cancer

Groundbreaking wastewater treatment research led by Oxford Brookes targets global challenge of toxic ‘forever chemicals’

Jefferson Health awarded $2.4 million in PCORI funding

Cilta-cel found highly effective in first real-world study

Unleashing the power of generative AI on smart collaborative innovation network platform to empower research and technology innovation

[Press-News.org] Chasing the cells that predict death from severe COVID-19
Gladstone scientists have uncovered T-cell signatures that may help understand why some people succumb to severe COVID-19 while others recover