- Press Release Distribution

InSight mission: Mars unveiled

InSight mission: Mars unveiled
( Using information obtained from around a dozen earthquakes detected on Mars by the Very Broad Band SEIS seismometer, developed in France, the international team of NASA's InSight mission has unveiled the internal structure of Mars. The three papers published on July 23, 2021 in the journal Science, involving numerous co-authors from French institutions and laboratories, including the CNRS, the Institut de Physique du Globe de Paris, and Université de Paris, and supported in particular by the French space agency CNES and the French National Research Agency ANR, provide, for the first time, an estimate of the size of the planet's core, the thickness of its crust and the structure of its mantle, based on the analysis of seismic waves reflected and modified by interfaces in its interior. It makes this the first ever seismic exploration of the internal structure of a terrestrial planet other than Earth, and an important step towards understanding the formation and thermal evolution of Mars.

Before NASA's InSight mission, the internal structure of Mars was still poorly understood. Models were based only on data collected by orbiting satellites and on the analysis of Martian meteorites that fell to Earth. On the basis of gravity and topographical data alone, the thickness of the crust was estimated to be between 30 and 100 km. Values of the planet's moment of inertia and density suggested a core with a radius of 1 400 to 2 000 km. The detailed internal structure of Mars and the depth of the boundaries between the crust, mantle and core were, however, completely unknown.

With the successful deployment of the SEIS experiment on the surface of Mars in early 2019, the mission scientists, including the 18 French co-authors involved and affiliated to a wide range of French institutions and laboratories , together with their colleagues from ETH in Zurich, the University of Cologne and the Jet Propulsion Laboratory in Pasadena, collected and analysed seismic data over one Martian year (almost two Earth years).

It should be pointed out that to simultaneously determine a structural model, the (arrival) time of an earthquake, and its distance, more than one station is usually required. However, on Mars the scientists only have one station, InSight. It was therefore necessary to search the seismic records for the characteristic features of waves that had interacted in various ways with the internal structures of Mars, and identify and validate them. These new measurements, coupled with mineralogical and thermal modelling of the planet's internal structure, have made it possible to overcome the limitation of having a single station. This method ushers in a new era for planetary seismology.

A single station, multiple findings

Another difficulty on Mars is its low seismicity and the seismic noise generated by its atmosphere. On Earth, earthquakes are much stronger, while seismometers are more effectively located in vaults or underground, making it possible to obtain an accurate image of the planet's interior. As a result, special attention had to be paid to the data. "But although Martian earthquakes have a relatively low magnitude, less than 3.5, the very high sensitivity of the VBB sensor combined with the very low noise at nightfall enabled us to make discoveries that, two years ago, we thought were only possible with earthquakes with a magnitude greater than 4," explains Philippe Lognonné, a Professor at the University of Paris and the Principal Investigator for the SEIS instrument at IPGP.

Every day, the data, processed by CNES, IPGP and CNRS, and transferred to the scientists, was carefully cleaned of ambient noise (wind and deformation related to rapid temperature changes). The international Mars Quake Service team (MQS) recorded the seismic events on a daily basis: more than 600 have now been catalogued, of which over 60 were caused by relatively distant earthquakes. Around ten of the latter contain information about the planet's deep structure: "The direct seismic waves from an earthquake are a bit like the sound of our voices in the mountains: they produce echoes. And it was these echoes, reflected off the core, or at the crust-mantle interface or even the surface of Mars, that we looked for in the signals, thanks to their similarity to the direct waves," Lognonné explains.

An altered crust, a mantle revealed, and a large liquid core

By comparing the behaviour of seismic waves as they travelled through the crust before reaching the InSight station, several discontinuities in the crust were identified: the first, observed at a depth of about 10 km, marks the boundary between a highly altered structure, resulting from circulation of fluid a very long time ago, and crust that is only slightly altered. A second discontinuity around 20 km down, and a third, less pronounced one at around 35 km, shed light on the stratification of the crust beneath InSight: "To identify these discontinuities, we used all the most recent analytical methods, both with earthquakes of tectonic origin and with vibrations caused by the environment (seismic noise)," says Benoit Tauzin, Senior Lecturer at the University of Lyon and a researcher at LGL-TPE.

In the mantle, the scientists analysed the differences between the travel time of the waves produced directly during the earthquake, and that of the waves generated when these direct waves were reflected off the surface. These differences made it possible, using only a single station, to determine the structure of the upper mantle, and in particular the variation in seismic velocities with depth. However, such variations in velocity are related to temperature. "That means we can estimate the heat flow of Mars, which is probably three to five times lower than the Earth's, and place constraints on the composition of the Martian crust, which is thought to contain over half the heat-producing radioactive elements present in the planet," adds Henri Samuel, a CNRS researcher at IPGP.

Finally, in the third study, the scientists looked for waves reflected off the surface of the Martian core, the measurement of whose radius was one of the main achievements of the InSight mission. "To do this," explains Mélanie Drilleau, a research engineer at ISAE-SUPAERO, "we tested several thousand mantle and core models against the phases and signals observed." Despite the low amplitudes of the signals associated with the reflected waves (known as ScS waves), an excess of energy was observed for cores with a radius between 1 790 km and 1 870 km. Such a large size implies the presence of light elements in the liquid core and has major consequences for the mineralogy of the mantle at the mantle / core interface.

Goals achieved, new questions emerge

More than two years of seismic monitoring has resulted in the very first model of the internal structure of Mars, right down to the core. Mars thus joins the Earth and the Moon in the select club of terrestrial planets and moons whose deep structures have been explored by seismologists. And, as often happens in planetary exploration, fresh questions emerge: is the alteration of the top 10 km of crust general, or is it limited to the InSight landing zone? What impact will these first models have on theories of the formation and thermal evolution of Mars, in particular for the first 500 million years when Mars had liquid water on its surface and intense volcanic activity?

With the two-year extension of the InSight mission and the additional electrical power obtained following the successful cleaning of its solar panels carried out by JPL, new data should consolidate and further improve these models.


About InSight and SEIS:

JPL manages the InSight mission on behalf of the NASA Science Mission Directorate. InSight is part of the NASA Discovery programme, operated by the Marshall Space Flight Center (MSFC), a NASA facility in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission. CNES is the prime contractor for SEIS, and the Institut de Physique du Globe de Paris (Université de Paris / IPGP / CNRS) assumes scientific responsibility for it. CNES funds French contributions, coordinates the international consortium (*) and was responsible for the integration, testing and supply of the complete instrument to NASA. The IPGP designed the VBB (Very Broad Band) sensors, tested them before their delivery to CNES and contributes to the operation of the VBBs on Mars.

SEIS and APSS operations are carried out by CNES within FOCSE-SISMOC, with the support of the Centro de Astrobiología (Spain). The SEIS data is formatted and distributed by the Mars SEIS Data Service of IPG Paris, as part of the InSight National Observation Service to which the LPG also contributes, as well as GéoAzur for 'Sismo at School' activities. The daily identification of earthquakes is carried out by InSight's Mars Quake Service, a collaborative operational service led by ETH Zurich, to which seismologists from IPG Paris, the University of Bristol (UK) and Imperial College London (UK) also contribute.

Several other CNRS laboratories including LMD (CNRS / ENS Paris / Ecole polytechnique / Sorbonne University), LPG (CNRS / University of Nantes / University of Angers), IRAP (CNRS / University of Toulouse / CNES), LGL-TPE (CNRS / Ecole normale supérieure de Lyon / Université Claude Bernard Lyon 1), IMPMC (Sorbonne University / French National Museum of Natural History / CNRS) and LAGRANGE (CNRS / Côte d'Azur University / Côte d'Azur Observatory) participate with IPGP and ISAE-SUPAERO in analyses of the InSight mission data. These analyses are supported by CNES and the French National Research Agency as part of the ANR MArs Geophysical InSight (MAGIS) project.

(*) in collaboration with SODERN for the development of the VBBs, JPL, the Swiss Federal Institute of Technology (ETH, Zürich Switzerland), the Max Planck Institute for Solar System Research (MPS, Göttingen, Germany), Imperial College London and the University of Oxford provided the subsystems of SEIS and are involved in the scientific operation of SEIS.

[Attachments] See images for this press release:
InSight mission: Mars unveiled


Stanford researchers develop tool to drastically speed up the study of enzymes

Stanford researchers develop tool to drastically speed up the study of enzymes
For much of human history, animals and plants were perceived to follow a different set of rules than the rest of the universe. In the 18th and 19th centuries, this culminated in a belief that living organisms were infused by a non-physical energy or "life force" that allowed them to perform remarkable transformations that couldn't be explained by conventional chemistry or physics alone. Scientists now understand that these transformations are powered by enzymes - protein molecules comprised of chains of amino acids that act to speed up, or catalyze, ...

Alpha variant spread via 'super-seeding' event in UK: Oxford research

The rapid spread of the Alpha variant of COVID-19 resulted from biological changes in the virus and was enhanced by large numbers of infected people 'exporting' the variant to multiple parts of the UK, in what the researchers call a 'super-seeding' event. Results of the largest phylogeographic analysis ever conducted, published today in the journal Science, maps the spread of the variant (also known as lineage B.1.1.7) from its origins in Kent and Greater London in November 2020 to all but five counties in Wales, Scotland, Northern Ireland and England by 19 January. Dr ...

Soft skin patch could provide early warning for strokes, heart attacks

Soft skin patch could provide early warning for strokes, heart attacks
Engineers at the University of California San Diego developed a soft and stretchy ultrasound patch that can be worn on the skin to monitor blood flow through major arteries and veins deep inside a person's body. Knowing how fast and how much blood flows through a patient's blood vessels is important because it can help clinicians diagnose various cardiovascular conditions, including blood clots; heart valve problems; poor circulation in the limbs; or blockages in the arteries that could lead to strokes or heart attacks. The new ultrasound patch developed at UC San Diego can continuously monitor ...

California's carbon mitigation efforts may be thwarted by climate change itself

Californias carbon mitigation efforts may be thwarted by climate change itself
Irvine, Calif., July 22, 2021 - To meet an ambitious goal of carbon neutrality by 2045, California's policymakers are relying in part on forests and shrublands to remove CO2 from the atmosphere, but researchers at the University of California, Irvine warn that future climate change may limit the ecosystem's ability to perform this service. In a paper published today in the American Geophysical Union journal AGU Advances, the UCI Earth system scientists stressed that rising temperatures and uncertain precipitation will cause a decrease in California's natural carbon storage capacity of as much as 16 percent under an extreme climate projection and of nearly 9 percent under a more moderate scenario. "This work highlights the conundrum ...

Cell-analysis technique could combat tuberculosis

ITHACA, N.Y. - A new method that analyzes how individual immune cells react to the bacteria that cause tuberculosis could pave the way for new vaccine strategies against this deadly disease, and provide insights into fighting other infectious diseases around the world. The cutting-edge technologies were developed in the lab of Dr. David Russell, the William Kaplan Professor of Infection Biology in the Department of Microbiology and Immunology in the College of Veterinary Medicine, and detailed in new research published in the Journal of Experimental Medicine on July 22. For years, Russell's lab has sought to unravel how Mycobacterium tuberculosis (Mtb), the bacteria that cause tuberculosis, infect and persist in their host cells, which are typically ...

New study provides clues to decades-old mystery about cell movement

New study provides clues to decades-old mystery about cell movement
A new study, led by University of Minnesota Twin Cities engineering researchers, shows that the stiffness of protein fibers in tissues, like collagen, are a key component in controlling the movement of cells. The groundbreaking discovery provides the first proof of a theory from the early 1980s and could have a major impact on fields that study cell movement from regenerative medicine to cancer research. The research is published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), a peer-reviewed, multidisciplinary, high-impact scientific journal. Directed cell movement, or what scientists call "cell contact guidance," refers to a phenomenon when the orientation of cells ...

Study points to remotely supervised exercise classes as best option during lockdown

Researchers at the University of São Paulo (USP) in Brazil investigated the effects of regular exercise on the physical and mental health of 344 volunteers during the pandemic. The study compared the effectiveness of three techniques: sessions led in person by a fitness instructor, sessions featuring an online instructor but no supervision, and sessions supervised remotely by an instructor via video call. The two kinds of session with professional supervision had the strongest effects on physical and mental health. According to the researchers, this was due to the possibility of increasing ...

Possible link between late-term births and better academic outcomes, study suggests

New Brunswick, NJ--Even at term, gestational age may have an impact on children's academic performance, findings of a new study suggest. The research showed an association between gestational age at term and above-average rankings in a number of academic subjects. The study, published in Pediatrics, compared teacher-reported outcomes for 1,405 9-year-old children in the United States, analyzing performance in mathematics, science and social studies, and language and literacy, for those born at 37 through 41 weeks gestation. It found that longer gestational age was significantly associated with average or above-average rankings in all areas. It also suggested a general pattern of worse outcomes for children born at early term (37-38 weeks) and better outcomes for those born at late ...

Eco-friendly plastic from cellulose and water

Eco-friendly plastic from cellulose and water
Plastics offer many benefits to society and are widely used in our daily life: they are lightweight, cheap and adaptable. However, the production, processing and disposal of plastics are simply not sustainable, and pose a major global threat to the environment and human health. Eco-friendly processing of reusable and recyclable plastics derived from plant-based raw materials would be an ideal solution. So far, the technological challenges have proved too great. However, researchers at the University of Göttingen have now found a sustainable method - "hydrosetting", which uses water at normal conditions - to process and reshape a new type of hydroplastic polymer called cellulose cinnamate (CCi). The research was published ...

Pathogens get comfy in designer goo

Pathogens get comfy in designer goo
HOUSTON -- (July 22, 2021) -- Researchers who want bacteria to feel right at home in the laboratory have put out a new welcome mat. Rice University bioengineers and Baylor College of Medicine scientists looking for a better way to mimic intestinal infections that cause diarrhea and other diseases have built and tested a set of hydrogel-based platforms to see if they could make both transplanted cells and bacteria comfy. As a mechanical model of intestinal environments, the lab's soft, medium and hard polyethylene glycol (PEG) hydrogels were far more welcoming to the cells that normally line the gut than the glass and plastic usually used by laboratories. These cells can then host bacteria like Escherichia coli that are sometimes pathogenic. The ability to study their ...


Scientists model 'true prevalence' of COVID-19 throughout pandemic

New breakthrough to help immune systems in the fight against cancer

Through the thin-film glass, researchers spot a new liquid phase

Administering opioids to pregnant mice alters behavior and gene expression in offspring

Brain's 'memory center' needed to recognize image sequences but not single sights

Safety of second dose of mRNA COVID-19 vaccines after first-dose allergic reactions

Changes in disparities in access to care, health after Medicare eligibility

Use of high-risk medications among lonely older adults

65+ and lonely? Don't talk to your doctor about another prescription

Exosome formulation developed to deliver antibodies for choroidal neovascularization therapy

Second COVID-19 mRNA vaccine dose found safe following allergic reactions to first dose

Plant root-associated bacteria preferentially colonize their native host-plant roots

Rare inherited variants in previously unsuspected genes may confer significant risk for autism

International experts call for a unified public health response to NAFLD and NASH epidemic

International collaboration of scientists rewrite the rulebook of flowering plant genetics

Improving air quality reduces dementia risk, multiple studies suggest

Misplaced trust: When trust in science fosters pseudoscience

Two types of blood pressure meds prevent heart events equally, but side effects differ

New statement provides path to include ethnicity, ancestry, race in genomic research

Among effective antihypertensive drugs, less popular choice is slightly safer

Juicy past of favorite Okinawan fruit revealed

Anticipate a resurgence of respiratory viruses in young children

Anxiety, depression, burnout rising as college students prepare to return to campus

Goal-setting and positive parent-child relationships reduce risk of youth vaping

New research identifies cancer types with little survival improvements in adolescents and young adul

Oncotarget: Replication-stress sensitivity in breast cancer cells

Oncotarget: TERT and its binding protein: overexpression of GABPA/B in gliomas

Development of a novel technology to check body temperature with smartphone camera

The mechanics of puncture finally explained

Extreme heat, dry summers main cause of tree death in Colorado's subalpine forests

[] InSight mission: Mars unveiled