PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Marine science oxygen produced in the deep sea raises questions about extraterrestrial life

BU researchers helped make startling discovery: rocks are generating “dark oxygen” in an area being explored for deep-sea mining

Marine science oxygen produced in the deep sea raises questions about extraterrestrial life
2024-08-26
(Press-News.org) Over 12,000 feet below the surface of the sea, in a region of the Pacific Ocean known as the Clarion-Clipperton Zone (CCZ), million-year-old rocks cover the seafloor. These rocks may seem lifeless, but nestled between the nooks and crannies on their surfaces, tiny sea creatures and microbes make their home, many uniquely adapted to life in the dark. 

These deep-sea rocks, called polymetallic nodules, don’t only host a surprising number of sea critters. A team of scientists that includes Boston University experts has discovered they also produce oxygen on the seafloor. 

The discovery is a surprise considering oxygen is typically created by plants and organisms with help from the sun—not by rocks on the ocean floor. About half of all the oxygen we breathe is made near the surface of the ocean by phytoplankton that photosynthesize just like land-dwelling plants. Since the sun is needed to carry out photosynthesis, finding oxygen production at the bottom of the sea, where there is no light, flips conventional wisdom on its head. It was so unexpected that scientists involved in the study first thought it was a mistake. 

“This was really weird, because no one had ever seen it before,” says Jeffrey Marlow, a BU College of Arts & Sciences assistant professor of biology and coauthor on the study, which was published in Nature Geoscience. 

As an expert in microbes that live in the most extreme habitats on Earth—like hardened lava and deep-sea hydrothermal vents—Marlow initially suspected that microbial activity could be responsible for making oxygen. The research team used deep-sea chambers that land on the seafloor and enclose the seawater, sediment, polymetallic nodules, and living organisms. They then measured how oxygen levels changed in the chambers over 48 hours. If there are plentiful organisms breathing oxygen, then the levels would normally decline, depending on how much animal activity is present in the chamber. But in this case, oxygen was increasing. 

“We did a lot of troubleshooting and found that the oxygen levels increased many more times following that initial measurement,” Marlow says. “So we’re now convinced it’s a real signal.”

He and his colleagues were aboard a research vessel tasked with learning more about the ecology of the CCZ, which spans 1.7 million square miles between Hawaii and Mexico, for an environmental survey sponsored by The Metals Company, a deep-sea mining firm interested in extracting the rocks en masse for metals. After running experiments on board the vessel, Marlow and the team, led by Andrew Sweetman at the Scottish Association for Marine Science, concluded the phenomenon isn’t primarily caused by microbial activity, despite the abundance of many different types of microbes both on and inside the rocks.

Polymetallic nodules are made of rare metals, including copper, nickel, cobalt, iron, and manganese, which is why companies are interested in mining them. It turns out, according to the study, that those densely packed metals are likely triggering “seawater electrolysis.” This means that metal ions in the rock layers are distributed unevenly, creating a separation of electrical charges—just like what happens inside of a battery. This phenomenon creates enough energy to split water molecules into oxygen and hydrogen. They named this “dark oxygen,” since it’s oxygen made with no sunlight. What remains unclear is the exact mechanism of how this happens, if oxygen levels vary across the CCZ, and if the oxygen plays a significant role in sustaining the local ecosystem. 

The Metals Company calls polymetallic nodules a “battery in a rock,” and on its website states that mining them could accelerate the transition to battery-powered electric vehicles and claims mining on land would eventually no longer be necessary. So far, mining in the CCZ is exploratory, but the United Nations International Seabed Authority, which manages the area, could start making decisions about mining as soon as next year. The Metals Company is working with the Pacific states of Nauru, Tonga, and Kiribati to gain access to mining licenses, but many other nations in the South Pacific, including Palau, Fiji, and Tuvalu, have vocally supported a moratorium or a pause to mining plans. Environmental activist groups like Greenpeace and Ocean Conservancy are calling for a permanent ban, and opponents of the operation fear it could cause irreversible damage to the seafloor.

In the meantime, scientists have begun studying the potential impacts of disturbing a largely unexplored ecosystem. This Nature Geoscience paper contributes insights about the baseline conditions of the area before any large-scale mining begins.

“We don’t know the full implications, but to me this finding suggests that we should deeply consider what altering these systems would do to the animal community,” Marlow says, since all animals need oxygen to survive. 

The CCZ is also the perfect environment to study the planet’s smallest organisms, such as bacteria and archaea (single-celled organisms) found in sediments and on the nodules. Marlow and his coauthor Peter Schroedl (GRS’25), a PhD student in BU’s ecology, behavior, and evolution program, are especially focused on using microbes found in extreme environments like the CCZ as templates for finding single-celled life on other planets and moons—since deserts, volcanoes, and seafloor vents are the most similar places we have to Mars and Saturn’s many moons. This is called astrobiology, a field that seeks to inform the search for extraterrestrial life by studying Earth’s systems.

“Life in environments like the CCZ provides an opportunity to study ecosystems that developed under distinct evolutionary pressures and constraints,” says Schroedl, who works in Marlow’s lab. Those conditions—the depth, pressure, and aquatic environment—are “analogous to conditions we have measured or expect to discover on icy moons,” he says. 

For example, Jupiter’s moon, Enceladus, and Saturn’s moon, Europa, are covered with layers of ice with no sunlight reaching that water trapped underneath. “Who knows—if these types of rocks are under the ice making oxygen, that could allow a more productive biosphere to exist,” Marlow says. “If photosynthesis isn’t required to make oxygen, then other planets with oceans and metal-rich rocks like these nodules could sustain a more evolved biosphere than we’ve thought possible in the past.”

There are plenty of questions to continue asking, Marlow says, about what the dark oxygen discovery means for extraterrestrial oceans and our own. 

“For the most part, we think of the deep sea as a place where decaying material falls down and animals eat the remnants. But this finding is recalibrating that dynamic,” he says. “It helps us to see the deep ocean as a place of production, similar to what we have found with methane seeps and hydrothermal vents that create oases for marine animals and microbes. I think it’s a fun inversion of how we tend to think about the deep sea.”

Republishers are kindly reminded to uphold journalistic integrity by providing proper crediting, including a direct link back to the original source URL here.

END

[Attachments] See images for this press release:
Marine science oxygen produced in the deep sea raises questions about extraterrestrial life

ELSE PRESS RELEASES FROM THIS DATE:

What microscopic fossilized shells tell us about ancient climate change

What microscopic fossilized shells tell us about ancient climate change
2024-08-26
At the end of the Paleocene and beginning of the Eocene epochs, between 59 to 51 million years ago, Earth experienced dramatic warming periods, both gradual periods stretching millions of years and sudden warming events known as hyperthermals. Driving this planetary heat up were massive emissions of carbon dioxide (CO2) and other greenhouse gases, but other factors like tectonic activity may have also been at play. New research led by University of Utah geoscientists pairs sea surface temperatures with levels ...

Li-ion batteries show promise as cheap and sustainable alternative to Ni/Co materials

Li-ion batteries show promise as cheap and sustainable alternative to Ni/Co materials
2024-08-26
Lithium-ion (or Li-ion) batteries are heavy hitters when it comes to the world of rechargeable batteries. As electric vehicles become more common in the world, a high-energy, low-cost battery utilizing the abundance of manganese (Mn) can be a sustainable option to become commercially available and utilized in the automobile industry. Currently, batteries used for powering electric vehicles (EVs) are nickel (Ni) and cobalt (Co)-based, which can be expensive and unsustainable for a society with a growing desire for EVs. By switching the positive electrode ...

The Lundquist Institute announces updates to its Board of Directors

The Lundquist Institute announces updates to its Board of Directors
2024-08-26
The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (TLI) announced updates to its Board of Directors today. TLI welcomes one new distinguished member and thanks the two outgoing members for their invaluable contributions. “On behalf of the Board, I am delighted that Dr. Bill Dorfman, a global leader in cosmetic dentistry, has joined the TLI Board. Dr. Dorfman's extensive expertise and commitment to philanthropy make him an invaluable addition to our leadership,” said Mitchel Sayare, PhD, TLI Board ...

Research from UTHealth Houston finds parents who recently experienced intimate partner violence had higher potential for parenting stress and child maltreatment

Research from UTHealth Houston finds parents who recently experienced intimate partner violence had higher potential for parenting stress and child maltreatment
2024-08-26
Parents who recently experienced intimate partner violence reported more parenting stress and higher potential for child maltreatment, and were less likely to use positive parenting strategies, according to UTHealth Houston research published Aug. 26, 2024, in JAMA Pediatrics. “Our findings demonstrate the collateral damage of domestic violence — that the negative consequences are not limited to the couple and instead have the potential to affect how they parent, and ultimately the health of their children. We must expend every effort to prevent this public health problem,” said Jeff Temple, PhD, ...

Research spotlight: Key regulators of pd-1 in melanoma cells and the immune system’s response

2024-08-26
How would you summarize your study for a lay audience?  Immune checkpoint inhibitors are cancer fighting drugs that help the immune system do its job of detecting and attacking tumor cells. Programmed Cell Death 1 (PD-1) is a common target for this type of drug—it is a protein that sits on the surface of T cells and helps regulate the immune system’s response to neighboring cells, both normal and cancerous. While most research efforts to date have focused on PD-1’s role in T cells, it is also active in many other kinds of cells—including cancer cells as first demonstrated by the Schatton ...

Lighting the way for quantum innovation

Lighting the way for quantum innovation
2024-08-26
ALBUQUERQUE, N.M. — Sandia National Laboratories and Arizona State University, two research powerhouses, are collaborating to push the boundaries of quantum technology and transform large-scale optical systems into compact integrated microsystems. Nils Otterstrom, a Sandia physicist specializing in integrated photonics, is at the forefront of scaling down optical systems to the size of a chip. This innovation offers performance advantages and scalability for an array of applications from advanced computing to secure communications. “Integrated ...

Spin squeezing for all

Spin squeezing for all
2024-08-26
Nothing in science can be achieved or understood without measurement. Today, thanks to advances in quantum sensing, scientists can measure things that were once impossible to even imagine: vibrations of atoms, properties of individual photons, fluctuations associated with gravitational waves. A quantum mechanical trick called “spin squeezing” is widely recognized to hold promise for supercharging the capabilities of the world’s most precise quantum sensors, but it’s been notoriously difficult to achieve. In new research, Harvard physicists describe how they’ve put spin squeezing ...

NSF funds research on the effects of evolution and food webs in climate change response

NSF funds research on the effects of evolution and food webs in climate change response
2024-08-26
Colorado State University is leading a new interdisciplinary research project into the ways predators and prey in sensitive ecosystems may react to climate change based on their physiology, genetics and relationships to each other.  Led by Professor Chris Funk in the Department of Biology, the project is funded by the National Science Foundation’s Organismal Response to Climate Change program and will focus on interactions between cutthroat trout and tailed frogs in Pacific Northwest streams. This approach is one of the first times researchers have tried to test both the effects of evolution and ...

Children's Brain Tumor Network hosts 2024 CBTN Summit to transform scientific research and patient care

Childrens Brain Tumor Network hosts 2024 CBTN Summit to transform scientific research and patient care
2024-08-26
What: The 2024 CBTN Summit hosted by the Children's Brain Tumor Network (CBTN) assembles the brightest minds in Pediatric Brian Tumor research for this annual conference. The event is free but attendees must register in advance. Register at network.cbtn.org/cbtn-summit Where: In person at AWS Headquarters Amazon WAS16 Aurora, 1770 Crystal Dr, Arlington, VA 22202 Virtual attendance available worldwide. When: October 9-11, 2024 Why: This event is an opportunity ...

Long-term prognosis of patients with myocarditis attributed to COVID-19 mRNA vaccination, SARS-CoV-2 infection, or conventional etiologies

2024-08-26
About The Study: Patients with post–COVID-19 mRNA vaccination myocarditis, contrary to those with post–COVID-19 myocarditis, show a lower frequency of cardiovascular complications than those with conventional myocarditis at 18 months. However, affected patients, mainly healthy young men, may require medical management up to several months after hospital discharge. Corresponding Authors: To contact the corresponding authors, email Laura Semenzato, MSc (laura.semenzato@assurance-maladie.fr) and Mahmoud Zureik, MD, PhD (Mahmoud.ZUREIK@ansm.sante.fr). To access the embargoed study: Visit our For The ...

LAST 30 PRESS RELEASES:

Reality check: making indoor smartphone-based augmented reality work

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Black men — including transit workers — are targets for aggression on public transportation, study shows

Troubling spike in severe pregnancy-related complications for all ages in Illinois

Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas

Need a landing pad for helicopter parenting? Frame tasks as learning

New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability

#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all

Earliest fish-trapping facility in Central America discovered in Maya lowlands

São Paulo to host School on Disordered Systems

New insights into sleep uncover key mechanisms related to cognitive function

USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery

Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance

3D-printing advance mitigates three defects simultaneously for failure-free metal parts 

Ancient hot water on Mars points to habitable past: Curtin study

In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon

Simplicity is key to understanding and achieving goals

Caste differentiation in ants

Nutrition that aligns with guidelines during pregnancy may be associated with better infant growth outcomes, NIH study finds

New technology points to unexpected uses for snoRNA

Racial and ethnic variation in survival in early-onset colorectal cancer

Disparities by race and urbanicity in online health care facility reviews

Exploring factors affecting workers' acquisition of exercise habits using machine learning approaches

Nano-patterned copper oxide sensor for ultra-low hydrogen detection

Maintaining bridge safer; Digital sensing-based monitoring system

A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity

A groundbreaking new approach to treating chronic abdominal pain

ECOG-ACRIN appoints seven researchers to scientific committee leadership positions

New model of neuronal circuit provides insight on eye movement

Cooking up a breakthrough: Penn engineers refine lipid nanoparticles for better mRNA therapies

[Press-News.org] Marine science oxygen produced in the deep sea raises questions about extraterrestrial life
BU researchers helped make startling discovery: rocks are generating “dark oxygen” in an area being explored for deep-sea mining