(Press-News.org) Researchers at the University of Virginia School of Engineering and Applied Science have developed a new polymer design that appears to rewrite the textbook on polymer engineering. No longer is it dogma that the stiffer a polymeric material is, the less stretchable it has to be.
“We are addressing a fundamental challenge that has been thought to be impossible to solve since the invention of vulcanized rubber in 1839,” said Liheng Cai, an assistant professor of materials science and engineering, and chemical engineering.
That’s when Charles Goodyear accidentally discovered that heating natural rubber with sulfur created chemical crosslinks between the strand-like rubber molecules. This crosslinking process creates a polymer network, transforming the sticky rubber, which melts and flows in the heat, into a durable, elastic material.
Ever since, it’s been believed that if you want to make a polymer network material stiff, you have to sacrifice some stretchability.
That is, until Cai’s team, led by Ph.D. student Baiqiang Huang, proved otherwise with their new “foldable bottlebrush polymer networks.” Their work, funded by Cai’s National Science Foundation CAREER Award, is on the cover of the Nov. 27 issue of Science Advances.
‘Decoupling’ Stiffness and Stretchiness
“This limitation has held back the development of materials that need to be both stretchable and stiff, forcing engineers to choose one property at the expense of the other,” Huang said. “Imagine, for example, a heart implant that bends and flexes with each heartbeat but still lasts for years.”
Huang first-authored the paper with postdoctoral researcher Shifeng Nian and Cai.
Crosslinked polymers are everywhere in products we use, from automobile tires to home appliances — and they are increasingly used in biomaterials and health care devices.
Some applications the team envisions for their material include prosthetics and medical implants, improved wearable electronics, and “muscles” for soft robotic systems that need to flex, bend and stretch repeatedly.
Stiffness and extensibility — how far a material can stretch or expand without breaking — are linked because they originate from the same building block: the polymer strands connected by crosslinks. Traditionally, the way to stiffen a polymer network is to add more crosslinks.
This stiffens the material but doesn’t solve the stiffness-stretchability trade-off. Polymer networks with more crosslinks are stiffer, but they don’t have the same freedom to deform, and they break easily when stretched.
“Our team realized that by designing foldable bottlebrush polymers that could store extra length within their own structure, we could ‘decouple’ stiffness and extensibility — in other words, build in stretchability without sacrificing stiffness,” Cai said. “Our approach is different because it focuses on the molecular design of the network strands rather than crosslinks.”
How the Foldable Design Works
Instead of linear polymer strands, Cai’s structure resembles a bottlebrush — many flexible side chains radiating out from a central backbone.
Critically, the backbone can collapse and expand like an accordion that unfolds as it stretches. When the material is pulled, hidden length inside the polymer uncoils, allowing it to elongate up to 40 times more than standard polymers without weakening.
Meanwhile, the side chains determine stiffness, meaning that stiffness and stretchability can finally be controlled independently.
This is a “universal” strategy for polymer networks because the components that make up the foldable bottlebrush polymer structure are not restricted to specific chemical types.
For example, one of their designs uses a polymer for the side chains that stays flexible even in cold temperatures. But using a different synthetic polymer, one that is commonly used in biomaterial engineering, for the side chains can produce a gel that can mimic living tissue.
Like many of the novel materials developed in Cai’s lab, the foldable bottlebrush polymer is designed to be 3D-printable. This is true even when mixed with inorganic nanoparticles, which can be designed to exhibit intricate electric, magnetic or optical properties.
For example, they can add conductive nanoparticles, such as silver or gold nanorods, which are critical to stretchable and wearable electronics.
“These components give us endless options for designing materials that balance strength and stretchability while harnessing the properties of inorganic nanoparticles based on specific requirements,” Cai said.
Publications and More Reading
“A universal strategy for decoupling stiffness and extensibility of polymer networks” is published in Science Advances. The team published foundational research for this work last year in Macromolecules, titled Unexpected Folding of Bottlebrush Polymers in Melts.
Learn more about Cai’s research:
Maximizing Biomedical Research
Lookalike Drug Carriers
Printing Voxel Building Blocks
Challenging a 30-Year Dogma
About UVA Engineering
At UVA Engineering, we are building a brighter future through engineering for the greater good. Our mission is to make the world a better place through bold research and world-class education, putting people at the center of innovation. Our vibrant, diverse community attracts outstanding students and faculty from around the world to our internationally recognized education and research programs, where we are making groundbreaking discoveries in fields including artificial intelligence, hypersonics, cancer research and more. UVA Engineering is part of the top-ranked University of Virginia and is distinguished by a community of care where collegiality, support and engineering ethics thrive.
END
In major materials breakthrough, UVA team solves a nearly 200-year-old challenge in polymers
UVA researchers defy materials science rules with molecules that release stored length to decouple stiffness and stretchability
2024-11-27
ELSE PRESS RELEASES FROM THIS DATE:
Wyoming research shows early North Americans made needles from fur-bearers
2024-11-27
A Wyoming archaeological site where people killed or scavenged a Columbian mammoth nearly 13,000 years ago has produced yet another discovery that sheds light on the life of these early inhabitants of North America.
Wyoming State Archaeologist Spencer Pelton and colleagues at the University of Wyoming and other institutions have found that these Paleolithic humans made needles from the bones of fur-bearers -- including foxes; hares or rabbits; and cats such as bobcats, mountain lions, lynx and possibly even the now-extinct ...
Preclinical tests show mRNA-based treatments effective for blinding condition
2024-11-27
A new preclinical study by Mass Eye and Ear investigators showed that a novel mRNA-based therapy may be able to prevent blindness and scarring from proliferative vitreoretinopathy (PVR) following a retinal detachment repair or traumatic injury to the eye. There is no current treatment for PVR other than surgery, which itself carries a high risk of causing or exacerbating PVR. Their results, published in Science Translational Medicine, show the promise that mRNA-based therapies may one day offer patients with PVR and other retinal conditions.
“This ...
Velcro DNA helps build nanorobotic Meccano
2024-11-27
Researchers at the University of Sydney Nano Institute have made a significant advance in the field of molecular robotics by developing custom-designed and programmable nanostructures using DNA origami.
This innovative approach has potential across a range of applications, from targeted drug delivery systems to responsive materials and energy-efficient optical signal processing. The method uses ‘DNA origami’, so-called as it uses the natural folding power of DNA, the building blocks of human life, to create new and useful biological structures.
As a proof-of-concept, the researchers made more than 50 nanoscale objects, including a ‘nano-dinosaur’, ...
Oceans emit sulfur and cool the climate more than previously thought
2024-11-27
Researchers have quantified for the first time the global emissions of a sulfur gas produced by marine life, revealing it cools the climate more than previously thought, especially over the Southern Ocean.
The study, published in the journal Science Advances, shows that the oceans not only capture and redistribute the sun's heat, but produce gases that make particles with immediate climatic effects, for example through the brightening of clouds that reflect this heat.
It broadens the climatic impact of marine sulfur because it adds a new compound, methanethiol, that had previously gone unnoticed. Researchers only detected the gas recently, because ...
Nanorobot hand made of DNA grabs viruses for diagnostics and blocks cell entry
2024-11-27
CHAMPAIGN, Ill. — A tiny, four-fingered “hand” folded from a single piece of DNA can pick up the virus that causes COVID-19 for highly sensitive rapid detection and can even block viral particles from entering cells to infect them, University of Illinois Urbana-Champaign researchers report. Dubbed the NanoGripper, the nanorobotic hand also could be programmed to interact with other viruses or to recognize cell surface markers for targeted drug delivery, such as for cancer treatment.
Led by Xing Wang, a professor of bioengineering and of chemistry at the ...
Rare, mysterious brain malformations in children linked to protein misfolding, study finds
2024-11-27
In 1992, Judith Frydman, PhD, discovered a molecular complex with an essential purpose in all of our cells: folding proteins correctly.
The complex, a type of “protein chaperone” known as TRiC, helps fold thousands of human proteins: It was later found that about 10% of all our proteins pass through its barrel structure.
All animals have several different kinds of protein chaperones, each with its own job of helping fold proteins in the cell. TRiC binds to newborn proteins and shapes these strings of amino acids into the correct 3D structures, ...
Newly designed nanomaterial shows promise as antimicrobial agent
2024-11-27
HOUSTON – (Nov. 27, 2024) – Newly developed halide perovskite nanocrystals (HPNCs) show potential as antimicrobial agents that are stable, effective and easy to produce. After almost three years, Rice University scientist Yifan Zhu and colleagues have developed a new HPNC that is effective at killing bacteria in a biofluid under visible light without experiencing light- and moisture-driven degradation common in HPNCs.
A new method using two layers of silicon dioxide that Zhu and colleagues developed over years of work was used in experiments with lead-based and bismuth-based HPNCs to test their antimicrobial efficacy and stability in water. ...
Scientists glue two proteins together, driving cancer cells to self-destruct
2024-11-27
Our bodies divest themselves of 60 billion cells every day through a natural process of cell culling and turnover called apoptosis.
These cells — mainly blood and gut cells — are all replaced with new ones, but the way our bodies rid themselves of material could have profound implications for cancer therapies in a new approach developed by Stanford Medicine researchers.
They aim to use this natural method of cell death to trick cancer cells into disposing of themselves. Their method accomplishes this by artificially bringing together two proteins in such a way that the new compound switches on a set of cell death genes, ultimately driving tumor cells to turn on themselves. ...
Intervention improves the healthcare response to domestic violence in low- and middle-income countries
2024-11-27
Culturally appropriate women-centred interventions can help healthcare systems respond to domestic violence, research has found. HERA (Healthcare Responding to Violence and Abuse) has been co-developing and evaluating a domestic violence and abuse healthcare intervention in low- and middle-income countries for the past five years. This National Institute for Health and Care Research (NIHR) Global Research Group will report their findings, and publish a PolicyBristol report, at a conference in London today ...
State-wide center for quantum science: Karlsruhe Institute of Technology joins IQST as a new partner
2024-11-27
The mission of IQST is to further our understanding of nature and develop innovative technologies based on quantum science by leveraging synergies between the natural sciences, engineering, and life sciences. "Many KIT scientists already successfully support IQST with their expertise as Fellows. All the more I am pleased that the Karlsruhe Institute of Technology is now joining our interdisciplinary centre as an institution," says IQST Director Prof. Stefanie Barz. "This will strengthen networking within the academic quantum community in Baden-Württemberg," emphasizes ...
LAST 30 PRESS RELEASES:
Osteoporosis treatment benefits people older than 80
Consuming more protein may protect patients taking anti-obesity drug from muscle loss
Thyroid treatment may improve gut health in people with hypothyroidism
Combination of obesity medication tirzepatide and menopause hormone therapy fuels weight loss
High blood sugar may have a negative impact on men’s sexual health
Emotional health of parents tied to well-being of children with growth hormone deficiency
Oxytocin may reduce mood changes in women with disrupted sleep
Mouse study finds tirzepatide slowed obesity-associated breast cancer growth
CMD-OPT model enables the discovery of a potent and selective RIPK2 inhibitor as preclinical candidate for the treatment of acute liver injury
Melatonin receptor 1a alleviates sleep fragmentation-aggravated testicular injury in T2DM by suppression of TAB1/TAK1 complex through FGFR1
Single-cell RNA sequencing reveals Shen-Bai-Jie-Du decoction retards colorectal tumorigenesis by regulating the TMEM131–TNF signaling pathway-mediated differentiation of immunosuppressive dendritic ce
Acta Pharmaceutica Sinica B Volume 15, Issue 7 Publishes
New research expands laser technology
Targeted radiation offers promise in patients with metastasized small cell lung cancer to the brain
A high clinically translatable strategy to anti-aging using hyaluronic acid and silk fibroin co-crosslinked hydrogels as dermal regenerative fillers
Mount Sinai researchers uncover differences in how males and females change their mind when reflecting on past mistakes
CTE and normal aging are difficult to distinguish, new study finds
Molecular arms race: How the genome defends itself against internal enemies
Tiny chip speeds up antibody mapping for faster vaccine design
KTU experts reveal why cultural heritage is important for community unity
More misfolded proteins than previously known may contribute to Alzheimer’s and dementia
“Too much going on”: Autistic adults overwhelmed by non-verbal social cues
What’s driving America’s deep freezes in a warming world?
A key role of brain protein in learning and memory is deciphered by scientists
Heart attacks don’t follow a Hollywood script
Erin M. Schuman wins 2026 Nakasone Award for discovery on neural synapse function and change during formation of memories
Global ocean analysis could replace costly in-situ sound speed profiles in seafloor positioning, study finds
Power in numbers: Small group professional coaching reduces rates of physician burnout by nearly 30%
Carbon capture, utilization, and storage: A comprehensive review of CCUS-EOR
New high-temperature stable dispersed particle gel for enhanced profile control in CCUS applications
[Press-News.org] In major materials breakthrough, UVA team solves a nearly 200-year-old challenge in polymersUVA researchers defy materials science rules with molecules that release stored length to decouple stiffness and stretchability