(Press-News.org) DURHAM, NC -- Most AIDS patients, when diagnosed with a fungal infection known simply as cryptococcosis, are assumed to have an infection with Cryptococcus neoformans, but a recent study from Duke University Medical Center suggests that a sibling species, Cryptococcus gattii, is a more common cause than was previously known.
The difference between these strains could make a difference in treatment, clinical course, and outcome, said Joseph Heitman, M.D., Ph.D., senior author of the study and chair of the Duke Department of Molecular Genetics and Microbiology.
The study was published Sept. 1 in PLoS Pathogens.
The study emphasizes that health professionals need more careful recording of the cryptococcal species to understand different clinical courses and possibly to change treatment strategies.
Researchers at Duke University Medical Center discovered that in the Los Angeles area, over 12 percent of AIDS patients diagnosed with Crypotococcus were infected with C. gattii, much higher than earlier studies, suggesting only about 1 percent have C. gattii. The researchers based these figures on molecular testing of fungal DNA barcodes.
This discovery comes at the same time as a C. gattii outbreak is expanding in the Pacific Northwest, spreading southward from Vancouver, British Columbia, through Washington, Oregon, and into northern California. Molecular testing is helping both health officials and scientists gain a picture of how a formerly tropical fungus could find new territory, in temperate climates, for infection.
"Importantly, we found that isolates causing the outbreak and those infecting AIDS patients are completely different (VGII vs. VGIII)," said co-lead author Edmond Byrnes, Ph.D., a recently graduated student in the Heitman laboratory.
Wenjun Li, Ph.D., also a co-lead author and researcher in the Heitman laboratory, noted that, based on the fungal isolate samples taken from patients, those with C. gattii may experience resistance to the commonly used "azole" drugs that combat fungal infections, and clinicians might be better aware of potential treatment problems if they knew the species.
Because cryptococcal strains are responsible for over 620,000 deaths annually and responsible for one-third of all AIDS deaths, this species distinction may be of public health importance.
"There may be an unrecognized health burden in AIDS patients attributable to C. gattii rather than C. neoformans," Heitman said.
He said that while a simple test is all that is needed to distinguish the two strains, "few clinical microbiology labs or hospitals, even in developed countries, are equipped to distinguish C. neoformans from C. gattii."
Heitman said that he doesn't believe that there is any human-to-human transmission of C. gattii, but rather, patients are being exposed in the environment. For example, one AIDS patient from San Diego had an isolate that was traced back to a type of tree, which is a common place to find C. gattii, in Australia and elsewhere.
"This study clearly illustrates that AIDS patients in certain areas of the world might be infected by two different cryptococcal species," said John R. Perfect, M.D., professor of medicine at Duke University Medical Center. "Although the outcome of infection in comparison between the two species remains uncertain, this study shows that we need to carefully control for potential differences and study them further."
Medical management might be more complicated for C. gattii compared to C. neoformans, including the possibility of azole drug resistance and the formation of cryptococcomas in the central nervous system that can be difficult to treat and that cause abscesses. "Based on the prevalence we found, it makes sense to pursue further clinical studies, not just to find out the species, but also the molecular type, so we can learn all we can about how this pathogen is travelling and evolving," Heitman said.
###Other authors include co-lead author Yonathan Lewit of Duke Molecular Genetics and Microbiology and Fred S. Dietrich of Duke Molecular Genetics and Microbiology, as well as the Duke Institute for Genome Sciences and Policy; co-lead author Ping Ren, Sudha Chatuverdi and Vishnu Chatuverdi of the Mycology Laboratory at Wadsworth Center in Albany, N.Y.; Kerstin Voelz and Robin C. May of the of the Department of Molecular Pathobiology in the School of Biosciences at the University of Birmingham in the United Kingdom (UK); and James A. Fraser of the Department of Molecular and Microbial Sciences at the University of Queensland, Brisbane, Australia.
The work was supported by the National Institutes of Health, the National Institute for Allergies and Infectious Disease, the Medical Research Council (UK), and funds from the Wadsworth Center Clinical Laboratory Reference System.
Cryptococcus infections misdiagnosed in many AIDS patients
2011-09-02
ELSE PRESS RELEASES FROM THIS DATE:
Sparing or sharing? Protecting wild species may require growing more food on less land
2011-09-02
In parts of the world still rich in biodiversity, separating natural habitats from high-yielding farmland could be a more effective way to conserve wild species than trying to grow crops and conserve nature on the same land, according to a new study published today (2 September 2011) in the journal Science.
The study, by researchers at the University of Cambridge and the Royal Society for the Protection of Birds, collected information on more than 600 species in southwest Ghana and northern India, two parts of the world where demand for agricultural land is putting ever ...
Glowing, blinking bacteria reveal how cells synchronize biological clocks
2011-09-02
Biologists have long known that organisms from bacteria to humans use the 24 hour cycle of light and darkness to set their biological clocks. But exactly how these clocks are synchronized at the molecular level to perform the interactions within a population of cells that depend on the precise timing of circadian rhythms is less well understood.
To better understand that process, biologists and bioengineers at UC San Diego created a model biological system consisting of glowing, blinking E. coli bacteria. This simple circadian system, the researchers report in the September ...
From a flat mirror, designer light
2011-09-02
Cambridge, Mass. - September 1, 2011 - Exploiting a novel technique called phase discontinuity, researchers at the Harvard School of Engineering and Applied Sciences (SEAS) have induced light rays to behave in a way that defies the centuries-old laws of reflection and refraction.
The discovery, published this week in Science, has led to a reformulation of the mathematical laws that predict the path of a ray of light bouncing off a surface or traveling from one medium into another—for example, from air into glass.
"Using designer surfaces, we've created the effects of ...
Two genes that cause familial ALS shown to work together
2011-09-02
NEW YORK, NY, (September 1, 2011) – Although several genes have been linked to amyotrophic lateral sclerosis (ALS), it is still unknown how they cause this progressive neurodegenerative disease. In a new study, Columbia University Medical Center (CUMC) researchers have demonstrated that two ALS-associated genes work in tandem to support the long-term survival of motor neurons. The findings were published in the September 1 online edition of the Journal of Clinical Investigation.
"Any therapy based on this discovery is probably a long way off. Nonetheless, it's an important ...
Cornell physicists capture microscopic origins of thinning and thickening fluids
2011-09-02
ITHACA, N.Y. – In things thick and thin: Cornell physicists explain how fluids – such as paint or paste - behave by observing how micron-sized suspended particles dance in real time. Using high-speed microscopy, the scientists unveil how these particles are responding to fluid flows from shear – a specific way of stirring. (Science, Sept. 2).
Observations by Xiang Cheng, Cornell post-doctoral researcher in physics and Itai Cohen, Cornell associate professor of physics, are the first to link direct imaging of the particle motions with changes in liquid viscosity.
Combining ...
UT MD Anderson scientists discover secret life of chromatin
2011-09-02
HOUSTON -- Chromatin - the intertwined histone proteins and DNA that make up chromosomes – constantly receives messages that pour in from a cell’s intricate signaling networks: Turn that gene on. Stifle that one.
But chromatin also talks back, scientists at The University of Texas MD Anderson Cancer Center report today in the journal Cell, issuing orders affecting a protein that has nothing to do with chromatin's central role in gene transcription - the first step in protein formation.
"Our findings indicate chromatin might have another life as a direct signaling molecule, ...
ATS publishes clinical practice guidelines on interpretation of FENO levels
2011-09-02
The American Thoracic Society has issued the first-ever guidelines on the use of fractional exhaled nitric oxide (FENO) that address when to use FENO and how to interpret FENO levels in different clinical settings. The guidelines, which appear in the September 1 American Journal of Respiratory and Critical Care Medicine, are graded based on the available evidence in the literature.
"There are existing guidelines to measure FENO but none to interpret the results," noted Raed A. Dweik, MD, chair of the guideline writing committee and professor of medicine and director ...
New map shows where tastes are coded in the brain
2011-09-02
Each taste, from sweet to salty, is sensed by a unique set of neurons in the brains of mice, new research reveals. The findings demonstrate that neurons that respond to specific tastes are arranged discretely in what the scientists call a "gustotopic map." This is the first map that shows how taste is represented in the mammalian brain.
There's no mistaking the sweetness of a ripe peach for the saltiness of a potato chip – in part due to highly specialized, selectively-tuned cells in the tongue that detect each unique taste. Now, Howard Hughes Medical Institute and NIH ...
Ben-Gurion U. researchers identify gene that leads to myopia (nearsightedness)
2011-09-02
BEER-SHEVA, ISRAEL, September 1, 2011— A Ben-Gurion University of the Negev research group led by Prof. Ohad Birk has identified a gene whose defect specifically causes myopia or nearsightedness.
In an article appearing online in the American Journal of Human Genetics today, Birk and his team reveal that a mutation in LEPREL1 has been shown to cause myopia.
"We are finally beginning to understand at a molecular level why nearsightedness occurs," Prof. Birk says. The discovery was a group effort at BGU's Morris Kahn Laboratory of Human Genetics at the National Institute ...
2 brain halves, 1 perception
2011-09-02
Our brain is divided into two hemispheres, which are linked through only a few connections. However, we do not seem to have a problem to create a coherent image of our environment – our perception is not "split" in two halves. For the seamless unity of our subjective experience, information from both hemispheres needs to be efficiently integrated. The corpus callosum, the largest fibre bundle connecting the left and right side of our brain, plays a major role in this process. Researchers from the Max Planck Institute for Brain Research in Frankfurt investigated whether ...