(Press-News.org) Yale University researchers have identified a key genetic gear that keeps the circadian clock of plants ticking, a finding that could have broad implications for global agriculture.
The research appears in the Sept. 2 issue of the journal Molecular Cell.
"Farmers are limited by the seasons, but by understanding the circadian rhythm of plants, which controls basic functions such as photosynthesis and flowering, we might be able to engineer plants that can grow in different seasons and places than is currently possible," said Xing Wang Deng, the Daniel C. Eaton Professor of Molecular, Cellular, and Developmental Biology at Yale and senior author of the paper.
The circadian clock is the internal timekeeper found in almost all organisms that helps synchronize biological processes with day and night. In plants, this clock is crucial for adjusting growth to both time and day and to the seasons.
The clock operates through the cooperative relationship between "morning" genes and "evening" genes. Proteins encoded by the morning genes suppress evening genes at daybreak, but by nightfall levels of these proteins drop and evening genes are activated. Intriguingly, these evening genes are necessary to turn on morning genes completing the 24-hour cycle.
The Yale research solved one of the last remaining mysteries in this process when they identified the gene DET1 as crucial in helping to suppress expression of the evening genes in the circadian cycle.
"Plants that make less DET1 have a faster clock and they take less time to flower," said lead author On Sun Lau, a former Yale graduate student who is now at Stanford University. "Knowing the components of the plant's circadian clock and their roles would assist in the selection or generation of valuable traits in crop and ornamental plants."
###
Other authors from Yale are Xi Huang, Jae-Hoon Lee, Gang Li and Jean-Benoit Charron, now of McGill University.
The research was funded by the National Institutes of Health and the National Science Foundation. Lau was supported in part by the Croucher Foundation.
Manipulating plants' circadian clock may make all-season crops possible
2011-09-02
ELSE PRESS RELEASES FROM THIS DATE:
Signs of aging may be linked to undetected blocked brain blood vessels
2011-09-02
Many common signs of aging, such as shaking hands, stooped posture and walking slower, may be due to tiny blocked vessels in the brain that can't be detected by current technology.
In a study reported in Stroke: Journal of the American Heart Association, researchers from Rush University Medical Center, Chicago, examined brain autopsies of older people and found:
Microscopic lesions or infarcts — too small to be detected using brain imaging — were in 30 percent of the brains of people who had no diagnosed brain disease or stroke.
Those who had the most trouble walking ...
Cryptococcus infections misdiagnosed in many AIDS patients
2011-09-02
DURHAM, NC -- Most AIDS patients, when diagnosed with a fungal infection known simply as cryptococcosis, are assumed to have an infection with Cryptococcus neoformans, but a recent study from Duke University Medical Center suggests that a sibling species, Cryptococcus gattii, is a more common cause than was previously known.
The difference between these strains could make a difference in treatment, clinical course, and outcome, said Joseph Heitman, M.D., Ph.D., senior author of the study and chair of the Duke Department of Molecular Genetics and Microbiology.
The ...
Sparing or sharing? Protecting wild species may require growing more food on less land
2011-09-02
In parts of the world still rich in biodiversity, separating natural habitats from high-yielding farmland could be a more effective way to conserve wild species than trying to grow crops and conserve nature on the same land, according to a new study published today (2 September 2011) in the journal Science.
The study, by researchers at the University of Cambridge and the Royal Society for the Protection of Birds, collected information on more than 600 species in southwest Ghana and northern India, two parts of the world where demand for agricultural land is putting ever ...
Glowing, blinking bacteria reveal how cells synchronize biological clocks
2011-09-02
Biologists have long known that organisms from bacteria to humans use the 24 hour cycle of light and darkness to set their biological clocks. But exactly how these clocks are synchronized at the molecular level to perform the interactions within a population of cells that depend on the precise timing of circadian rhythms is less well understood.
To better understand that process, biologists and bioengineers at UC San Diego created a model biological system consisting of glowing, blinking E. coli bacteria. This simple circadian system, the researchers report in the September ...
From a flat mirror, designer light
2011-09-02
Cambridge, Mass. - September 1, 2011 - Exploiting a novel technique called phase discontinuity, researchers at the Harvard School of Engineering and Applied Sciences (SEAS) have induced light rays to behave in a way that defies the centuries-old laws of reflection and refraction.
The discovery, published this week in Science, has led to a reformulation of the mathematical laws that predict the path of a ray of light bouncing off a surface or traveling from one medium into another—for example, from air into glass.
"Using designer surfaces, we've created the effects of ...
Two genes that cause familial ALS shown to work together
2011-09-02
NEW YORK, NY, (September 1, 2011) – Although several genes have been linked to amyotrophic lateral sclerosis (ALS), it is still unknown how they cause this progressive neurodegenerative disease. In a new study, Columbia University Medical Center (CUMC) researchers have demonstrated that two ALS-associated genes work in tandem to support the long-term survival of motor neurons. The findings were published in the September 1 online edition of the Journal of Clinical Investigation.
"Any therapy based on this discovery is probably a long way off. Nonetheless, it's an important ...
Cornell physicists capture microscopic origins of thinning and thickening fluids
2011-09-02
ITHACA, N.Y. – In things thick and thin: Cornell physicists explain how fluids – such as paint or paste - behave by observing how micron-sized suspended particles dance in real time. Using high-speed microscopy, the scientists unveil how these particles are responding to fluid flows from shear – a specific way of stirring. (Science, Sept. 2).
Observations by Xiang Cheng, Cornell post-doctoral researcher in physics and Itai Cohen, Cornell associate professor of physics, are the first to link direct imaging of the particle motions with changes in liquid viscosity.
Combining ...
UT MD Anderson scientists discover secret life of chromatin
2011-09-02
HOUSTON -- Chromatin - the intertwined histone proteins and DNA that make up chromosomes – constantly receives messages that pour in from a cell’s intricate signaling networks: Turn that gene on. Stifle that one.
But chromatin also talks back, scientists at The University of Texas MD Anderson Cancer Center report today in the journal Cell, issuing orders affecting a protein that has nothing to do with chromatin's central role in gene transcription - the first step in protein formation.
"Our findings indicate chromatin might have another life as a direct signaling molecule, ...
ATS publishes clinical practice guidelines on interpretation of FENO levels
2011-09-02
The American Thoracic Society has issued the first-ever guidelines on the use of fractional exhaled nitric oxide (FENO) that address when to use FENO and how to interpret FENO levels in different clinical settings. The guidelines, which appear in the September 1 American Journal of Respiratory and Critical Care Medicine, are graded based on the available evidence in the literature.
"There are existing guidelines to measure FENO but none to interpret the results," noted Raed A. Dweik, MD, chair of the guideline writing committee and professor of medicine and director ...
New map shows where tastes are coded in the brain
2011-09-02
Each taste, from sweet to salty, is sensed by a unique set of neurons in the brains of mice, new research reveals. The findings demonstrate that neurons that respond to specific tastes are arranged discretely in what the scientists call a "gustotopic map." This is the first map that shows how taste is represented in the mammalian brain.
There's no mistaking the sweetness of a ripe peach for the saltiness of a potato chip – in part due to highly specialized, selectively-tuned cells in the tongue that detect each unique taste. Now, Howard Hughes Medical Institute and NIH ...