PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

New biomarkers of malignant melanoma identified

Scientists identify new biomarkers in patients with malignant melanoma, which could help in its diagnosis and prognosis

New biomarkers of malignant melanoma identified
2021-03-25
(Press-News.org) Their study has shown that these malignant melanoma vesicles produced by CSCs have a different molecular composition from that of differentiated tumour cells. These molecules were also found to be detectable in exosomes present in the blood, and they presented differences in patients with malignant melanoma compared to healthy individuals. This makes them potentially suitable as biomarkers for the diagnosis and prognosis of this disease. The results have been published in the prestigious scientific journal Molecular Oncology.

Malignant melanoma is one of the most aggressive types of skin cancer and its prevalence has been increasing worldwide in recent years. Among the factors that contribute to the life-threatening nature and severity of this disease are the late appearance of the first symptoms, the lack of effective treatments, its high metastasis capacity, and also the difficulty of detecting this particular cancer. Unfortunately, the diagnosis of malignant melanoma therefore continues to be problematic due to the lack of indicators--known as biomarkers--to accurately signal the early stages of this disease and predict how it might evolve in a given patient, once detected. These characteristics, which make this type of cancer such a serious disease, may be partly attributable to so-called cancer stem cells (CSCs), a sub-population of cells that exist in tumours and that present the typical characteristics of stem cells. They are responsible for tumour initiation, maintenance, and progression, as well as metastasis and recurrence--even years after a tumour has been eradicated. Now, a team of scientists led by Professor Juan Antonio Marchal Corrales of the Department of Human Anatomy and Embryology at the University of Granada (UGR) and Director of the "Doctores Galera y Requena" Chair in Research on Cancer Stem Cells, pertaining to the Biohealth Research Institute in Granada (ibs.GRANADA) and the MNat Scientific Unit of Excellence (ModelingNature), has studied these CSCs--specifically, the microvesicles that act as "messengers" for these cells. Known as exosomes, these cells produce and send other cells and tissues to communicate via the transfer of certain biomolecules, thereby promoting the emergence of metastases. These exosomes have been shown to be involved in many tumour processes. As cells release them and circulate via the bloodstream, they offer a very interesting source of biomarkers as they can be easily isolated from a blood sample. This study focused on the molecular characterization of exosomes produced by CSCs and isolated in the blood from patients with malignant melanoma. Metabolomic techniques were used to analyse the molecular profile of biological systems in order to identify possible biomarkers for the diagnosis of this disease. This study is the result of extensive multidisciplinary work in which translational researchers, bioinformaticians, and clinical researchers have joined forces to take another step in the field of Personalized Medicine or Precision Medicine in Oncology. The team comprises members from the UGR; Fundación MEDINA (led by Francisca Vicente and José Pérez del Palacio, Area Head and Principal Investigator of the Screening Department, respectively); and the "Virgen de las Nieves" and "San Cecilio" Teaching Hospitals in Granada (all members of ibs.GRANADA ); the University of Vigo; and the Spanish National Cancer Research Centre (CNIO). Among its findings, the study showed that the molecular composition of exosomes produced by CSCs is different from those released by differentiated tumour cells. To investigate this, using a primary patient-derived malignant melanoma cell line enriched in CSCs, both types of cells were cultivated in large quantities and the exosomes that they produced and released into the culture were isolated. Once the properties and characteristics of both the cells and the exosomes they produced had been tested, a metabolomic analysis was carried out. This enabled the molecules (metabolites) present in the biological sample to be studied. After the molecules had been detected and extracted using a mass spectrometer, which quantifies them with great precision, a series of statistical analyses were carried out to determine which molecules were found in the highest concentration in the exosomes of each cell type. Thus, the researchers tentatively identified some lipidic metabolites differentially present in exosomes of CSCs and differentiated tumour cells. Metabolomic profile Subsequently, and following the same scientific approach, a similar study was carried out comparing the metabolomic profile of exosomes isolated from the blood of patients with malignant melanoma in different stages and healthy individuals who acted as controls. The study concluded that certain metabolites, including some of those previously identified in CSCs, were also present in exosomes isolated from blood in different concentrations among melanoma patients and healthy individuals. By means of the corresponding statistical models, these molecules and their different concentrations in blood made it possible to distinguish individuals with malignant melanoma from those without the disease. This makes them suitable candidates for acting as potential biomarkers for its diagnosis. However, the authors emphasise that this study is only a first step. The identification of some of these molecules, the complete characterization of those already tentatively identified, and the replication of the study with a greater number of samples to validate and verify their clinical application as biomarkers all remain pending. Studies such as this constitute a new avenue for the discovery of cancer biomarkers aimed at improving early diagnosis, prognosis, and treatment-response prediction. And, of course, these results can be extrapolated to many other tumours, in the quest to identify biomarkers that help us better understand the pathogenesis of these diseases and achieve personalized precision medicine.

INFORMATION:

The study was funded by: the Spanish Ministry of Science, Innovation and Universities (project RTI2018-101309 -B-C2) and the Training Programme for University Teaching Staff (FPU) awarded to José Luis Palacios Ferrer (ref: FPU15/03682); the "Carlos III" Health Institute (project PIE16- 00045); the Ministry of Economy, Knowledge, Business and University of the Junta de Andalucía; the European Regional Development Fund (project SOMM17/6109/UGR, UCE-PP2017-3), the UGR's "Doctores Galera y Requena" Chair in Research on Cancer Stem Cells; and Fundación MEDINA.


[Attachments] See images for this press release:
New biomarkers of malignant melanoma identified

ELSE PRESS RELEASES FROM THIS DATE:

New 'bi-molecule' with multiple technological applications discovered

New bi-molecule with multiple technological applications discovered
2021-03-25
Dr. Rosario González-Férez, a researcher at the Department of Atomic, Molecular and Nuclear Physics and the "Carlos I" Institute of Theoretical and Computational Physics of the University of Granada, has published the article "Ultralong-Range Rydberg Bi-molecules" in the prestigious scientific journal Physical Review Letters. The results of the study show a new type of bi-molecule formed from two nitric oxide (NO) molecules, both in their ground state and in the Rydberg electronic state. The work was made possible thanks to the scientific collaboration between the researcher and the Institute for Theoretical Atomic, Molecular ...

SMART develops rapid deterministic lateral displacement assay to assess immune response

SMART develops rapid deterministic lateral displacement assay to assess immune response
2021-03-25
The novel label-free assay uses unconventional L and inverse-L shaped pillars of deterministic lateral displacement (DLD) microfluidic technology to quantify and profile immune states of white blood cells (WBCs) by assessing biophysical properties of size, deformation, distribution, and cell count The assay requires only 20 microlitres (μl) of unprocessed blood and takes just 15 minutes - much faster than existing methods which require up to 15 millilitres (ml) of blood and take at least a few hours to produce results This new technology measures and profiles the often volatile host immune response, resulting in a more accurate assessment of patient pathophysiology Current methods for early diagnosis of infection focus on ...

The imaginary part of quantum mechanics really exists!

The imaginary part of quantum mechanics really exists!
2021-03-25
For almost a century, physicists have been intrigued by the fundamental question: why are complex numbers so important in quantum mechanics, that is, numbers containing a component with the imaginary number i? Usually, it was assumed that they are only a mathematical trick to facilitate the description of phenomena, and only results expressed in real numbers have a physical meaning. However, a Polish-Chinese-Canadian team of researchers has proved that the imaginary part of quantum mechanics can be observed in action in the real world. We need to significantly reconstruct our naive ...

New study sheds light on how X and Y chromosomes interact

2021-03-25
Researchers at Lund University in Sweden have investigated how the X and Y chromosomes evolve and adapt to each other within a population. The results show that breaking up coevolved sets of sex chromosomes could lead to lower survival rates among the offspring - something that could be of importance in species conservation, for example. The study is published in the journal PNAS. The results provide new clues on how species are formed, and suggest it could be harmful to bring together individuals from different populations that have been separated for a long time. The reason is that the offspring have lower survival rates. "This is something worth keeping in mind in conservation biology, where you want to see a population ...

Ancient megafaunal mutualisms and extinctions as factors in plant domestication

Ancient megafaunal mutualisms and extinctions as factors in plant domestication
2021-03-25
By clearing forests, burning grasslands, plowing fields and harvesting crops, humans apply strong selective pressures on the plants that survive on the landscapes we use. Plants that evolved traits for long-distance seed-dispersal, including rapid annual growth, a lack of toxins and large seed generations, were more likely to survive on these dynamic anthropogenic landscapes. In the current article, researchers argue that these traits may have evolved as adaptations for megafaunal mutualisms, later allowing those plants to prosper among increasingly sedentary human populations. The new study hypothesizes that the presence of specific anthropophilic traits explains why a select few plant families came to dominate the crop and weed ...

New documentation: Old-growth forest carbon sinks overestimated

2021-03-25
The claim that old-growth forests play a significant role in climate mitigation, based upon the argument that even the oldest forests keep sucking CO2 out of the atmosphere, is being refuted by researchers at the University of Copenhagen. The researchers document that this argument is based upon incorrectly analysed data and that the climate mitigation effect of old and unmanaged forests has been greatly overestimated. Nevertheless, they reassert the importance of old-growth forest for biodiversity. Old and unmanaged forest has become the subject of much debate in ...

A divided cell is a doubled cell

2021-03-25
One big challenge for the production of synthetic cells is that they must be able to divide to have offspring. In the journal Angewandte Chemie, a team from Heidelberg has now introduced a reproducible division mechanism for synthetic vesicles. It is based on osmosis and can be controlled by an enzymatic reaction or light. Organisms cannot simply emerge from inanimate material ("abiogenesis"), cells always come from pre-existing cells. The prospect of synthetic cells newly built from the ground up is shifting this paradigm. However, one obstacle on this path is the question of controlled division--a requirement for having "progeny". A team from the Max Planck Institute for Medical Research in Heidelberg, Heidelberg ...

Automated embryo selection system might rise likelihood of success in treating infertility

Automated embryo selection system might rise likelihood of success in treating infertility
2021-03-25
The team of researchers at Kaunas University of Technology (KTU), Lithuania applied artificial intelligence (AI) methods to evaluate data of human embryo development. The AI-based system photographs the embryos every five minutes, processes the data of their development and notifies any anomalies observed. This increases the likelihood of choosing the most viable and healthy early-stage embryo for IVF procedures. The innovation was developed in collaboration with Esco Medical Technologies, a manufacturer of medical equipment. Almost one in six couples face infertility; about 48.5 million couples, 186 million individuals worldwide are inflicted. Europe has one of the lowest birth rates in the world, with an average of just 1.55 children per woman. The most effective form of ...

Researchers dig deeper into how migrating cells interact in the body

2021-03-25
By offering a microscopic "tightrope" to cells, Virginia Tech and Johns Hopkins University researchers have brought new insights to the way migrating cells interact in the body. The researchers changed their testing environment for observing cell-cell interaction to more closely mirror the body, resulting in new observations of cells interacting like cars on a highway -- pairing up, speeding up, and passing one another. Understanding the ways migrating cells react to one another is essential to predicting how cells change and evolve and how they react in applications, such as wound healing and drug delivery. In a study published in the Proceedings of the National Academy of Sciences, a team formed by Mechanical Engineering Associate ...

TPU scientists develop sensor with nanopores for definition doping in blood

TPU scientists develop sensor with nanopores for definition doping in blood
2021-03-25
Scientists of Tomsk Polytechnic University jointly with colleagues from different countries have developed a new sensor with two layers of nanopores. In the conducted experiments, this sensor showed its efficiency as a sensor for one of the doping substances from chiral molecules. The research findings are published in Biosensors and Bioelectronics (IF: 10,257; Q1) academic journal. The material is a thick wafer with pores of 20-30 nm in diameter. The scientists grew a layer of metal-organic frameworks (MOF) from Zn ions and organic molecules on these thick wafers. The MOF has about 3 nm nanopores only. It plays the role of a trap for molecules, which must be detected. "This sensor can operate with chiral molecules. Such substances consisting of chiral molecules are a lot among medical ...

LAST 30 PRESS RELEASES:

Red light linked to lowered risk of blood clots

Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology

Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance

Harnessing microwave flow reaction to convert biomass into useful sugars

Unveiling the secrets of bone strength: the role of biglycan and decorin

Revealing the “true colors” of a single-atom layer of metal alloys

New data on atmosphere from Earth to the edge of space

Self-destructing vaccine offers enhanced protection against tuberculosis in monkeys

Feeding your good gut bacteria through fiber in diet may boost body against infections

Sustainable building components create a good indoor climate

High levels of disordered eating among young people linked to brain differences

Hydrogen peroxide and the mystery of fruit ripening: ‘Signal messengers’ in plants

T cells’ capability to fully prevent acute viral infections opens new avenues for vaccine development

Study suggests that magma composition drives volcanic tremor

Sea surface temperatures and deeper water temperatures reached a new record high in 2024

Connecting through culture: Understanding its relevance in intercultural lingua franca communication

Men more than three times as likely to die from a brain injury, new US study shows

Tongue cancer organoids reveal secrets of chemotherapy resistance

Applications, limitations, and prospects of different muscle atrophy models in sarcopenia and cachexia research

FIFAWC: A dataset with detailed annotation and rich semantics for group activity recognition

Transfer learning-enhanced physics-informed neural network (TLE-PINN): A breakthrough in melt pool prediction for laser melting

Holistic integrative medicine declaration

Hidden transport pathways in graphene confirmed, paving the way for next-generation device innovation

New Neurology® Open Access journal announced

Gaza: 64,000 deaths due to violence between October 2023 and June 2024, analysis suggests

Study by Sylvester, collaborators highlights global trends in risk factors linked to lung cancer deaths

Oil extraction might have triggered small earthquakes in Surrey

Launch of world’s most significant protein study set to usher in new understanding for medicine

New study from Chapman University reveals rapid return of water from ground to atmosphere through plants

World's darkest and clearest skies at risk from industrial megaproject

[Press-News.org] New biomarkers of malignant melanoma identified
Scientists identify new biomarkers in patients with malignant melanoma, which could help in its diagnosis and prognosis