PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers analyzed circulating currents inside gold nanoparticles

A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures

Researchers analyzed circulating currents inside gold nanoparticles
2021-04-30
(Press-News.org) Researchers in the Nanoscience Center of University of Jyvaskyla, in Finland and in the Guadalajara University in Mexico developed a method that allows for simulation and visualization of magnetic-field-induced electron currents inside gold nanoparticles. The method facilitates accurate analysis of magnetic field effects inside complex nanostructures in nuclear magnetic resonance measurements and establishes quantitative criteria for aromaticity of nanoparticles. The work was published 30.4.2021 as an Open Access article in Nature Communications.

According to the classical electromagnetism, a charged particle moving in an external magnetic field experiences a force that makes the particle's path circular. This basic law of physics is used, e.g., in designing cyclotrons that work as particle accelerators. When nanometer-size metal particles are placed in a magnetic field, the field induces a circulating electron current inside the particle. The circulating current in turn creates an internal magnetic field that opposes the external field. This physical effect is called magnetic shielding.

The strength of the shielding can be investigated by using nuclear magnetic resonance (NMR) spectroscopy. The internal magnetic shielding varies strongly in an atomic length scale even inside a nanometer-size particle. Understanding these atom-scale variations is possible only by employing quantum mechanical theory of the electronic properties of each atom making the nanoparticle.

Now, the research group of Professor Hannu Häkkinen in the University of Jyväskylä, in collaboration with University of Guadalajara in Mexico, developed a method to compute, visualize, and analyze the circulating electron currents inside complex 3D nanostructures. The method was applied to gold nanoparticles with a diameter of only about one nanometer. The calculations shed light onto unexplained experimental results from previous NMR measurements in the literature regarding how magnetic shielding inside the particle changes when one gold atom is replaced by one platinum atom.

A new quantitative measure to characterize aromaticity inside metal nanoparticles was also developed based on the total integrated strength of the shielding electron current.

"Aromaticity of molecules is one of the oldest concepts in chemistry, and it has been traditionally connected to ring-like organic molecules and to their delocalized valence electron density that can develop circulating currents in an external magnetic field. However, generally accepted quantitative criteria for the degree of aromaticity have been lacking. Our method yields now a new tool to study and analyze electron currents at the resolution of one atom inside any nanostructure, in principle. The peer reviewers of our work considered this as a significant advancement in the field", says Professor Häkkinen who coordinated the research.

INFORMATION:

The authors of the article included post-doctoral researcher Omar Lopez Estrada (lead author), PhD student Elli Selenius and university researcher Sami Malola in Häkkinen's group and professor Bernardo Zuniga-Gutierrez in Guadalaraja University in Mexico. The computations were made by using the Finnish Computing Competence Infrastructure (FCCI) in University of Jyväskylä.

Link to the research in Nature Communications in 30 April 2021

Further information: Professor Hannu Häkkinen, hannu.j.hakkinen@jyu.fi, tel. +358 400 247 973


[Attachments] See images for this press release:
Researchers analyzed circulating currents inside gold nanoparticles

ELSE PRESS RELEASES FROM THIS DATE:

A milestone in muscular dystrophy therapy

A milestone in muscular dystrophy therapy
2021-04-30
Muscle stem cells enable our muscle to build up and regenerate over a lifetime through exercise. But if certain muscle genes are mutated, the opposite occurs. In patients suffering from muscular dystrophy, the skeletal muscle already starts to weaken in childhood. Suddenly, these children are no longer able to run, play the piano or climb the stairs, and often they are dependent on a wheelchair by the age of 15. Currently, no therapy for this condition exists. "Now, we are able to access these patients' gene mutations using CRISPR-Cas9 technology," explains Professor Simone Spuler, head of the Myology Lab at the Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité ...

Vaccines bring us closer

Vaccines bring us closer
2021-04-30
Effectively and safely protecting against disease--this is what makes vaccines a vital and successful public health tool that saves lives and safeguards health and well-being. Today, vaccines shield us from more than 20 life-threatening diseases. Each year, between 2 to 3 million lives are saved by immunisation against diseases like diphtheria, tetanus, pertussis, influenza or measles [1]. However, several vaccines such as the one against measles can only reach their full potential--protecting not just those who are immunised, but also those who might not be eligible for vaccination--if ...

Latest observations by MUSER help clarify solar eruptions

Latest observations by MUSER help clarify solar eruptions
2021-04-30
Prof. YAN Yihua and his research team from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) recently released detailed results of observations by the new generation solar radio telescope--Mingantu Spectral Radio Heliograph (MUSER)--from 2014 to 2019. The study was published in Frontiers in Astronomy and Space Sciences on March 29. It may help us better understand the basic nature of solar eruptions. Solar radio bursts are associated with different types of powerful eruptions like solar flares, coronal mass ejections, and various thermal and nonthermal processes. They are prompt indicators of disastrous space weather events. Solar radio observations, especially at centimeter ...

New view of species interactions offers clues to preserve threatened ecosystems

New view of species interactions offers clues to preserve threatened ecosystems
2021-04-30
As the health of ecosystems in regions around the globe declines due to a variety of rising threats, scientists continue to seek clues to help prevent future collapses. A new analysis by scientists from around the world, led by a researcher at the University of California San Diego, is furthering science's understanding of species interactions and how diversity contributes to the preservation of ecosystem health. A coalition of 49 researchers examined a deep well of data describing tree species in forests located across a broad range of countries, ecosystems and latitudes. Information about the 16 forest diversity plots in Panama, China, Sri Lanka, Puerto Rico and other locations--many in remote, inaccessible ...

Researchers develop chip that improves testing and tracing for COVID-19

Researchers develop chip that improves testing and tracing for COVID-19
2021-04-30
Jeremy Edwards, director of the Computational Genomics and Technology (CGaT) Laboratory at The University of New Mexico, and his colleagues at Centrillion Technologies in Palo Alto, Calif. and West Virginia University, have developed a chip that provides a simpler and more rapid method of genome sequencing for viruses like COVID-19. Their research, titled, "Highly Accurate Chip-Based Resequencing of SARS-CoV-2 Clinical Samples" was published recently in the American Chemical Society's Langmuir. As part of the research, scientists created a tiled genome array they developed for rapid and inexpensive full viral genome resequencing and applied their SARS-CoV-2-specific genome tiling array to rapidly and accurately resequenced ...

Clinically viable blood test for donor-derived cell-free DNA

2021-04-30
Boston, MA (April 30, 2021) - A new study, presented today at the AATS 101st Annual Meeting, shows that non-invasive cell-free DNA tests can reduce the need for regular surveillance biopsies to detect early rejection in heart transplant patients. The study was the first of its kind to be performed on both adult and pediatric patients. Pediatric and adult heart transplant recipients were recruited prospectively from eight participating sites and followed longitudinally for at least 12 months with serial plasma samples collected immediately prior to all endomyocardial biopsies. Structured biopsy results and clinical data were collected and monitored by an independent clinical research organization (CRO). For ...

Study finds similar long-term outcomes for mechanically-ventilated COVID-19 patients

2021-04-30
Boston, MA (April 30, 2021) - A new study, presented today at the AATS 101st Annual Meeting, found that severely ill COVID-19 patients treated with ECMO did not suffer worse long-term outcomes than other mechanically-ventilated patients. The multidisciplinary team included cardio thoracic surgeons, critical care doctors, medical staff at long-term care facilities, physical therapists and other specialists, and followed patients at five academic centers: University of Colorado; University of Virginia; University of Kentucky; Johns Hopkins University; and Vanderbilt University. ...

The novel coronavirus' spike protein plays additional key role in illness

The novel coronavirus spike protein plays additional key role in illness
2021-04-30
LA JOLLA--(April 30, 2021) Scientists have known for a while that SARS-CoV-2's distinctive "spike" proteins help the virus infect its host by latching on to healthy cells. Now, a major new study shows that they also play a key role in the disease itself. The paper, published on April 30, 2021, in Circulation Research, also shows conclusively that COVID-19 is a vascular disease, demonstrating exactly how the SARS-CoV-2 virus damages and attacks the vascular system on a cellular level. The findings help explain COVID-19's wide variety of seemingly unconnected complications, and could ...

Move over CRISPR, the retrons are coming

2021-04-30
While the CRISPR-Cas9 gene editing system has become the poster child for innovation in synthetic biology, it has some major limitations. CRISPR-Cas9 can be programmed to find and cut specific pieces of DNA, but editing the DNA to create desired mutations requires tricking the cell into using a new piece of DNA to repair the break. This bait-and-switch can be complicated to orchestrate, and can even be toxic to cells because Cas9 often cuts unintended, off-target sites as well. Alternative gene editing techniques called recombineering instead perform this bait-and-switch ...

Decoding the effect of body mass index on breast cancer

2021-04-30
Medical researchers at Flinders University have established a new link between high body mass index (BMI) and breast cancer survival rates - with clinical data revealing worse outcomes for early breast cancer (EBC) patients and improved survival rates in advanced breast cancer (ABC). In a new study published in a top breast cancer journal- researchers evaluated data from 5 thousand patients with EBC and 3496 with ABC to determine associations between BMI and survival rates across both stages. Researchers say the results present an 'obesity paradox' which will impact the survival outcomes of the 19,807 women and 167 men diagnosed with breast cancer in Australia in 2020. Natansh Modi, a NHMRC PHD Candidate at Flinders University, says understanding the ...

LAST 30 PRESS RELEASES:

Effectiveness and safety of tenofovir amibufenamide in the treatment of chronic hepatitis B: A real-world, multicenter study

Higher costs limit attendance for life changing cardiac rehab

Over 500 patients receive diagnosis through genetic reanalysis

Brain changes in Huntington’s disease decades before diagnosis will guide future prevention trials

U of A astronomers capture unprecedented view of supermassive black hole in action

Astrophysicists reveal structure of 74 exocomet belts orbiting nearby stars in landmark survey

Textbooks need to be rewritten: RNA, not DNA, is the main cause of acute sunburn

Brits still associate working-class accents with criminal behavior – study warns of bias in the criminal justice system

What do you think ‘guilty’ sounds like? Scientists find accent stereotypes influence beliefs about who commits crimes

University of Calgary nursing study envisions child trauma treatment through a Marvel and DC lens

Research on performance optimization of virtual data space across WAN

Researchers reveal novel mechanism for intrinsic regulation of sugar cravings

Immunological face of megakaryocytes

Calorie labelling leads to modest reductions in selection and consumption

The effectiveness of intradialytic parenteral nutrition with ENEFLUID???? infusion

New study reveals AI’s transformative impact on ICU care with smarter predictions and transparent insights

Snakes in potted olive trees ‘tip of the iceberg’ of ornamental plant trade hazards

Climate change driving ‘cost-of-living' squeeze in lizards

Stem Cell Reports seeks applications for its Early Career Scientist Editorial Board

‘Brand new physics’ for next generation spintronics

Pacific Islander teens assert identity through language

White House honors Tufts economist

Sharp drop in mortality after 41 weeks of pregnancy

Flexible electronics integrated with paper-thin structure for use in space

Immune complex shaves stem cells to protect against cancer

In the Northeast, 50% of adult ticks carry Lyme disease carrying bacteria

U of A Cancer Center clinical trial advances research in treatment of biliary tract cancers

Highlighting the dangers of restricting discussions of structural racism

NYU Tandon School of Engineering receives nearly $10 million from National Telecommunications and Information Administration

NASA scientists find new human-caused shifts in global water cycle

[Press-News.org] Researchers analyzed circulating currents inside gold nanoparticles
A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures