(Press-News.org) PROVIDENCE, R.I. [Brown University] — Scientists have shown that temperature differences deep within Earth's mantle control the elevation and volcanic activity along mid-ocean ridges, the colossal mountain ranges that line the ocean floor. The findings, published April 4 in the journal Science, shed new light on how temperature in the depths of the mantle influences the contours of the Earth's crust.
Mid-ocean ridges form at the boundaries between tectonic plates, circling the globe like seams on a baseball. As the plates move apart, magma from deep within the Earth rises up to fill the void, creating fresh crust as it cools. The crust formed at these seams is thicker in some places than others, resulting in ridges with widely varying elevations. In some places, the peaks are submerged miles below the ocean surface. In other places — Iceland, for example — the ridge tops are exposed above the water's surface.
"These variations in ridge depth require an explanation," said Colleen Dalton, assistant professor of geological sciences at Brown and lead author of the new research. "Something is keeping them either sitting high or sitting low."
That something, the study found, is the temperature of rocks deep below Earth's surface.
By analyzing the speeds of seismic waves generated by earthquakes, the researchers show that mantle temperature along the ridges at depths extending below 400 kilometers varies by as much as 250 degrees Celsius. High points on the ridges tend to be associated with higher mantle temperatures, while low points are associated with a cooler mantle. The study also showed that volcanic hot spots along the ridge — volcanoes near Iceland as well as the islands of Ascension, Tristan da Cunha, and elsewhere — all sit above warm spots in Earth's mantle.
"It is clear from our results that what's being erupted at the ridges is controlled by temperature deep in the mantle," Dalton said. "It resolves a long-standing controversy and has not been shown definitively before."
A CAT scan of the Earth
The mid-ocean ridges provide geologists with a window to the interior of the Earth. The ridges form when mantle material melts, rises into the cracks between tectonic plates, and solidifies again. The characteristics of the ridges provide clues about the properties of the mantle below.
For example, a higher ridge elevation suggests a thicker crust, which in turn suggests that a larger volume of magma was erupted at the surface. This excess molten rock can be caused by very hot temperatures in the mantle. The problem is that hot mantle is not the only way to produce excess magma. The chemical composition of the rocks in Earth's mantle also controls how much melt is produced. For certain rock compositions, it is possible to generate large volumes of molten rock under cooler conditions. For many decades it has not been clear whether mid-ocean ridge elevations are caused by variations in the temperature of the mantle or variations in the rock composition of the mantle.
To distinguish between these two possibilities, Dalton and her colleagues introduced two additional data sets. One was the chemistry of basalts, the rock that forms from solidification of magma at the mid-ocean ridge. The chemical composition of basalts differs depending upon the temperature and composition of the mantle material from which they're derived. The authors analyzed the chemistry of nearly 17,000 basalts formed along mid-ocean ridges around the globe.
The other data set was seismic wave tomography. During earthquakes, seismic waves are sent pulsing through the rocks in the crust and mantle. By measuring the velocity of those waves, scientists can gather data about the characteristics of the rocks through which they traveled. "It's like performing a CAT scan of the inside of the Earth," Dalton said.
Seismic wave speeds are especially sensitive to the temperature of rocks. In general, waves propagate more quickly in cooler rocks and more slowly in hotter rocks.
Dalton and her colleagues combined the seismic data from hundreds of earthquakes with data on elevation and rock chemistry from the ridges. Correlations among the three data sets revealed that temperature deep in the mantle varied between around 1,300 and 1,550 degrees Celsius underneath about 61,000 kilometers of ridge terrain. "It turned out," said Dalton, "that seismic tomography was the smoking gun. The only plausible explanation for the seismic wave speeds is a very large temperature range."
The study showed that as ridge elevation falls, so does mantle temperature. The coolest point beneath the ridges was found near the lowest point, an area of very deep and rugged seafloor known as the Australian-Antarctic discordance in the Indian Ocean. The hottest spot was near Iceland, which is also the ridges' highest elevation point.
Iceland is also where scientists have long debated whether a mantle plume — a vertical jet of hot rock originating from deep in the Earth — intersects the mid-ocean ridge. This study provides strong support for a mantle plume located beneath Iceland. In fact, this study showed that all regions with above-average temperature are located near volcanic hot spots, which points to mantle plumes as the culprit for the excess volume of magma in these areas.
Understanding a churning planet
Despite being made of solid rock, Earth's mantle doesn't sit still. It undergoes convection, a slow churning of material from the depths of the Earth toward the surface and back again.
"Convection is why we have plate tectonics and earthquakes," Dalton said. "It's also responsible for almost all volcanism at the surface. So understanding mantle convection is crucial to understanding many fundamental questions about the Earth."
Two factors influence how that convection works: variations in the composition of the mantle and variations in its temperature. This work, says Dalton, points to temperature as a primary factor in how convection is expressed on the surface.
"We get consistent and coherent temperature measurements from the mantle from three independent datasets," Dalton said. "All of them suggest that what we see at the surface is due to temperature, and that composition is only a secondary factor. What is surprising is that the data require the temperature variations to exist not only near the surface but also many hundreds of kilometers deep inside the Earth."
The findings from this study will also be useful in future research using seismic waves, Dalton says. Because the temperature readings as indicated by seismology were backed up by the other datasets, they can be used to calibrate seismic readings for places where geochemical samples aren't available. This makes it possible to estimate temperature deep in Earth's mantle all over the globe.
That will help geologists gain a new insights into how processes deep within the Earth mold the ground beneath our feet.
INFORMATION:
Dalton's coauthors were Charles Langmuir from Harvard University and Allison Gale from the University of Wisconsin–River Falls. The work was supported by the National Science Foundation (grants OCE-0752166 and OCE-0752281).
Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.
Hot mantle drives elevation, volcanism along mid-ocean ridges
2014-04-03
ELSE PRESS RELEASES FROM THIS DATE:
HIV vaccine research must consider various immune responses
2014-04-03
WHAT:Last year, the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, held a scientific meeting to examine why certain investigational HIV vaccines may have increased susceptibility to HIV infection. In a new perspectives article appearing in the journal Science, HIV research leaders from NIAID (Anthony S. Fauci, M.D., and Carl W. Dieffenbach, Ph.D.) and its grantees at Emory University (Eric Hunter, Ph.D.) and the University of California, San Francisco (Susan Buchbinder, M.D.), summarize the findings and considerations ...
Moving the fence posts
2014-04-03
The use of fenced areas to protect threatened species in the wild should be a last resort, argue scientists from the Zoological Society of London (ZSL) and the Wildlife Conservation Society (WCS).
In an article published in the journal Science, the authors state that there is a need to review the use of fencing as the conservation community develops a clearer understanding of the ecological changes caused when an area is fenced.
Fencing can have a disruptive impact on predator-prey dynamics, with species such as the African wild dog learning to chase prey into fences. ...
Researchers design trees that make it easier to produce paper
2014-04-03
Researchers have genetically engineered trees that will be easier to break down to produce paper and biofuel, a breakthrough that will mean using fewer chemicals, less energy and creating fewer environmental pollutants.
"One of the largest impediments for the pulp and paper industry as well as the emerging biofuel industry is a polymer found in wood known as lignin," says Shawn Mansfield, a professor of Wood Science at the University of British Columbia.
Lignin makes up a substantial portion of the cell wall of most plants and is a processing impediment for pulp, ...
Cassini reports sub-surface ocean on Enceladus
2014-04-03
Enceladus—one of Saturn's smaller satellites—has joined the ranks of Titan and Europa as a moon that appears to have liquid water splashing around inside of it, researchers say. New gravity data from the Cassini spacecraft, which has been exploring the planet's moons for 10 years, reveal that Enceladus harbors an ocean of water beneath 18 to 24 miles (30 to 40 kilometers) of ice at its surface.
A team of Italian and American scientists led by Luciano Iess at Sapienza Università di Roma in Rome, Italy investigated the moon's gravity field and the notable asymmetry it ...
Gravity measurements confirm subsurface ocean on Enceladus
2014-04-03
In 2005, NASA's Cassini spacecraft sent pictures back to Earth depicting an icy Saturnian moon spewing water vapor and ice from fractures, known as "tiger stripes," in its frozen surface. It was big news that tiny Enceladus—a mere 500 kilometers in diameter—was such an active place. Since then, scientists have hypothesized that a large reservoir of water lies beneath that icy surface, possibly fueling the plumes. Now, using gravity measurements collected by Cassini, scientists have confirmed that Enceladus does in fact harbor a large subsurface ocean near its south pole, ...
'Unzipping' poplars' biofuel potential
2014-04-03
EAST LANSING, Mich. — What began 20 years ago as an innovation to improve paper industry processes and dairy forage digestibility may now open the door to a much more energy- and cost-efficient way to convert biomass into fuel.
The research, which appears in the current issue of Science, focuses on enhancing poplar trees so they can break down easier and thus improving their viability as a biofuel. The long-term efforts and teamwork involved to find this solution can be described as a rare, top-down approach to engineering plants for digestibility, said Curtis Wilkerson, ...
Study shows more than half of high-risk alcohol users report improvement after surgery
2014-04-03
BOSTON – Much has been reported about the potential for increased risk of alcohol misuse after weight loss surgery (WLS), with most theories pointing to lower alcohol tolerance and a longer time to return to a sober state after surgery, but a new study from Beth Israel Deaconess Medical Center suggests that upwards of half of high-risk drinkers are actually less likely to report high-risk drinking behavior after weight loss surgery.
The results appear in the journal, Surgery for Obesity and Related Diseases.
"This is the first study to show that high-risk drinking ...
Aging workforce requires new strategies for employee retention, MU researcher says
2014-04-03
COLUMBIA, Mo. – As more baby boomers reach retirement age, state governments face the likelihood of higher workforce turnover. For example, in the state of Missouri, more than 25 percent of all active state employees will be eligible to retire by 2016. Such large numbers of retirees threaten the continuity, membership and institutional histories of the state government workforce, according to Angela Curl, assistant professor in the University of Missouri School of Social Work. In a case study of the state of Missouri's Deferred Retirement Option Provision (BackDROP), Curl ...
Scientists say new computer model amounts to a lot more than a hill of beans
2014-04-03
CHAMPAIGN, Ill. — Crops that produce more while using less water seem like a dream for a world with a burgeoning population and already strained food and water resources. This dream is coming closer to reality for University of Illinois at Urbana-Champaign researchers who have developed a new computer model that can help plant scientists breed better soybean crops.
Under current climate conditions, the model predicts a design for a soybean crop with 8.5 percent more productivity, but using 13 percent less water, and reflecting 34 percent more radiation back into space, ...
Dress and behavior of mass shooters as factors to predict and prevent future attacks
2014-04-03
New Rochelle, NY, April 3, 2014–In many recent incidents of premeditated mass shooting the perpetrators have been male and dressed in black, and may share other characteristics that could be used to identify potential shooters before they commit acts of mass violence. Risk factors related to the antihero, dark-knight persona adopted by these individuals are explored in an article in Violence and Gender, a new peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Violence and Gender website at http://www.liebertpub.com/vio.
In ...